High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to 1000°C, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at 900°C, the specific surface area of the resultant carbon aerogels reached 2309 m2 g–1. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.
Forward osmosis (FO) has emerged as one of the most promising technologies for seawater desalination. Despite the progress in membrane technology, draw solutions are still limited in terms of its reusability thereby hampering its economic viability. Hydrophilic ILs can be easily dissolved in water to constitute a DS. ILs are environmentally benign due to their high thermal stability and negligible vapor pressure. Hydrophilic ILs can be easily dissolved in water to constitute a DS. ILs are environmentally benign due to their high thermal stability and negligible vapor pressure. This work was supported by NRF funded by the Korea government funded by the Ministry of Science and ICT (2016R1A2B1009221 and 2017R1A2B2002109) and Ministry of Education (2009-0093816 and 22A20130012051(BK21Plus)).
Ionic liquid (IL), asymmetric chemical consist of bulky cations and tiny-mobile anions, has been known as promising DNA extraction, separation and preservation agent due to its strong interaction with DNA. However, the interaction underlying DNA-IL complex forming mechanism remains to be elucidated. Herein, we employed three types of ILs (EMIM-Cl, BMIM-Cl, and OMIM-Cl) to investigate the changes of DNA morphology upon the alkyl chain length of ILs by using solid-state nanopore technology combining with atomic force microscopy (AFM). The results of AFM show the different forms of DNA, including aggregate, stretching, and bundling shapes in terms of EMIM-Cl, BMIM-Cl, and OMIM-Cl, respectively, assuming that the shape of DNA-IL complexes is responding to the alkyl chain length of ILs. In DNA translocation experiment. From the alteration of blockade current signals during the DNA pass through the nanopore, we estimate that the shapes of DNA are changed due to the treatment with BMIM-Cl, and OMIM-Cl, which not only increased the blockade current signals about 2-4 times in the case of OMIM, but also decrease the event showing translocation of DNA folding, implying that the alkyl chain affect to DNA stretching and bundling. The results indicate the length of hydrophobic alkyl group of IL plays an important role in determination of DNA morphology, providing their further application in nanopore technique for slowing DNA translocation speed toward discovering protein-DNA interaction or DNA sequencing.
Ionic liquids (ILs) are potential drawing agents in forward osmosis (FO) due to their high ionicity, low vapor pressure and high solubility. A series of ILs were investigated as draw solutes for FO application and were compared with NaCl. Water (Jv )and reverse (Js) fluxes were evaluated using commercially available HTI-CTA membrane via FO and PRO modes. FO runs were conducted using 0.3M draw solution and DI water as feed. Results reveal that ILs like BMIM acetate, BMIM bromide and N4444 acetate were able to generate high Jv but with negligible Js. This demonstrates the potential of certain ILs as FO drawing agents. This research was supported by NRF through the Ministry of Science, ICT & Future Planning (No.2016R1A2B1009221) and through Basic Science Research Program of Ministry of Education(2009-0093816).
Ionic liquids (ILs) are organic salts with low melting point by asymmetric ionic strength between cation and anion. They have been known as promising DNA extraction, separation and preservation agent due to their hydrophilic, hydrophobic interaction with DNA. However, few studies have been performed about how DNA-ILs complexes form and their mechanism. Herein, we present three types of ionic liquids (EMIM-Cl, BMIM-Cl, and OMIM-Cl) change the DNA structure depend on alkyl chain length of ionic liquids. Structural changes of DNA by ionic liquids are observed by Atomic force microscopy, gel electrophoresis, zeta potential and solid-state nanopore technology. The results of AFM show the different structures of DNA, including aggregate, stretching, and bundling shapes in terms of EMIM-Cl, BMIM-Cl, and OMIM-Cl respectively. In DNA translocation experiment, DNA/EMIM-Cl show rare translocation signal due to aggregated structure by neutralized surface charge. DNA/BMIM-Cl and DNA/OMIM-Cl show slowing down the translocation speed due to changes of DNA net charge and structure. Especially, OMIM-Cl make slowing down the DNA translocation speed about 102~104 times compared to translocation speed of bare DNA by unzipping the bundling shape of complex. In conclusion, the morphology of DNA could be modified by the incorporation with different alkyl chain length of ILs, providing their further application in nanopore technique for slowing DNA sequencing or understanding protein-DNA interaction.
Ionic liquids (ILs) have been used in DNA extraction/separation, DNA preservation and PCR based on their characteristic affinity to DNA. However, few studies have been performed about how DNA-IL complex forms and its mechanism which would be essential to understand the role of ILs over the range of applications. Herein, we present that the differences in the structure of the DNA- IL complex are associated with the alkyl chain length of IL. The assumption was evidenced by Atomic force microscopy, DNA specific dye staining, gel-electrophoresis and real-time electrical measurement. We observed unique electrical signals with altered duration time and amplitude when DNA- ILs complexes pass through solid-state nanopore. We examined three types of ILs (EMIM-Cl, BMIM-Cl, and OMIM-Cl) for their characteristics to form DNA-ILs complexes. The results indicated that the length of hydrophobic alkyl group in respective ILs determines the form of DNA-IL complex. In conclusion, the morphology of DNA could be modified by the incorporation with different alkyl chain length of ILs, providing their further application in biosensor such as nanopore technique for DNA sequencing or understanding protein-DNA interaction.
이 논문은 온도차에 따라 변화되는 이온성 액체와 낮은 밴드갭을 갖는 고분자인 poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole)(PHVTT) 간의 상호작용 및 고분자 의 거동을 조사하 였다. 이온성 액체는 methyl imidazolium chloride([MIM]Cl), butyl methyl imidazolium chloride([BMIM]Cl), tri-butyl methyl ammonium methyl sulfate([TBMA][ MeSO4])를 사용하였으며, 21, 28, 32, 37℃로 온도를 변화시키며 상호작용의 변화를 UV-vis spectroscopy, FT-IR spectroscopy, photoluminescence spectroscopy를 통해 확인한 결과 이온성 액체인 [MIM]Cl, [TBMA][MeSO4]와 PHVTT의 상호작용은 점차 약해짐을 확인할 수 있었지만, [BMIM]Cl은 온도 변화에 따른 상호작용의 변화를 보이지 않았다.
Several nitrile-functionalized ionic liquids have been prepared and characterized. An attempt was made to systematically characterize nitrile-functionalized ionic liquids on the basis of a few kinds of cations and anions. The detailed comparison of the differences in physicical characteristics such as UV-Vis spectroscopy, thermal stability, viscosity, solubility property, and electrochemical property before and after incorporation of a nitrile group were studied. The results showed that the incorporation of a nitrile group to cations could result in remarkable changes in these properties.
이온성 액체 기술에서의 학문적 연구들은 원자력 산업으로 확대되어 왔으며 많은 연구자들에 의해 방사성 물질의 처리에 이 온성 액체의 활용이 연구되어 왔다. 다수의 연구들에 의해 사용후핵연료에 포함되어 있는 금속 원소들의 분광학적, 전기화 학적 거동에 대한 흥미로운 결과들이 보고되었다. TBP(tri-butyl phosphate)를 용해시킨 이온성 액체에서 측정되고 관찰된 금속 이온들의 물성들은 전통적인 수용성 공정에 대한 대안 기술 개발을 유발시켰다. 한편, 수용성 및 비수용성 공정에서의 활용을 위해 이온성 액체에서 금속 이온의 전기화학적 전착이 연구되었다. 본 연구에서는 이온성 액체 연구에서 주목할 만 한 내용들을 분류하고 정리하여 핵연료주기에서 이온성 액체의 활용에 대해 고찰하였다.
Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. In addition to this, UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate [N1444] MeSO4] from ammonium family) and 1-methylimidazolium chloride ([MIM]Cl, and 1-butyl-3-methylimidazolium chloride [Bmim]Cl from imidazolium family) has potential to interact with polymer. Further, protic ILs shows enhanced conductivity than aprotic ILs with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities.
The synthesis of cyclic carbonate from butyl glycidyl ether (BGE) and carbon dioxide was performed in the presence of three different types of ionic liquid : quarternary ammonium salt, alkyl pyridinium salt, and alkylimidazolium salt. Ionic liquids of different alkyl groups (C3, C4, C6 and C8) and anions (Cl-, Br- and I-) were used for the reaction which was carried out in a batch autoclave reactor at 60~120℃. The catalytic activity was increased with increasing alkyl chain length in the order of C3 〈 C4 〈 C6. But the ionic liquid with longer alkyl chain length (C8) decreased the conversion of BGE because it is too bulky to form an intermediate with BGE. For the counter anion of the ionic liquid catalysts, the BGE conversion decreased in the order Cl- 〉 Br- 〉 I-.
이온전도도가 높은 상온 이온액을 이용하여 저온, 고온 상분리에 의한 multi-stage phase separation process로 새로운 고정화 이온액 전해질 막(supported ionic liquid electrolyte membranes, SILEMs)을 제조하였다. PVDF와 imidazolium계 이온액을 각각 분리막 소재와 전해액으로 사용하였다. 이온전도도 특성을 알아보기 위해 SILEMs을 LCR meter를 이용 해 30℃부터 130℃까지 실험하였다. 가습조건에서 cast Nafion 막의 이온전도도는 30℃부터 100℃까지는 직선적으로 증가하였으나 그 이후에는 감소하였다. 그러나 SILEMs의 경우 운전온도의 증가에 따라 이온전도도가 증가하였다. 또한 SILEMs의 이온전도도 거동은 가습과 관계없이 거의 같았다. SILEMs의 이온전도도는 30℃에서 2.7×10 -3 S/cm이었고 온도가 130℃까지 증가함에 따라 2.2×10 -2 S/cm까지 거의 직선적으로 증가하였다. SiO2를 이용하여 SILEMs의 물리적 성질에 대한 무기첨가제의 영향에 관하여 연구하였다. SILEMs에 SiO2의 첨가는 비록 약간의 이온전도도 감소는 있으나 SILEMs의 기계적 강도를 향상시킬 수 있었다.