The deep geological repository consisting of a multi-barrier system (engineered and natural barriers) is generally designed to isolate the high-level radioactive waste. The natural barrier is outermost portion to secure safety of the disposal. Crystalline rocks are considered for potential geological repository media to retard and inhibit the migration of radionuclides when the radionuclides leak from the canister and break through the engineered barrier. Sorption and diffusion processes play a major role in retardation of the radionuclides in deep underground environment. In order to evaluate the migration of radionuclides in the safety assessment or geochemical modelling, distribution coefficient and diffusivity of radionuclides are required as input data. In this study, we performed mineralogical and geochemical analysis for a crystalline rock (e.g., granite) to use the sorption and diffusion experiment. The fresh rock samples are obtained from a deep core samples (DB-2) drilled up to 1 km from the surface at KURT (KAERI Underground Research Tunnel) site. For the optical and microscopic examination, thin sections of the rock sample were provided. The rock samples were crushed into powder size to analyze major and trace elements of the whole-rock aliquots. The powdered specimens also used for mineral identification and measurement of specific surface area. The major constituent minerals of the granite are plagioclase, quartz, and K-feldspar and the minor minerals are phlogopite, biotite, and chlorite. According to the results of geochemical analysis, the granite specimens generally contain more than 70wt% of SiO2 and 8wt% of total alkali oxides (Na2O + K2O). The trace elements normalized to primitive mantle compositions show positive Cs, Rb, U, K, and Pb anomalies and negative Nb and Ti anomalies. The rock samples have an average density of 2.62 g·cm−3 and an average porosity of 0.222%. The crushed samples represent the specific surface area of 0.2087 m2·g−1 for the 75–150 μm fraction and 0.1616 m2·g−1 for the 150–300 μm fraction by BET method, respectively. The granite specimens will be used for the sorption and diffusion experiments to evaluate the radionuclides’ geochemical behaviors. The mineralogical and geochemical properties provided in this study can be useful in understanding the sorption and diffusion processes of significant radionuclides under the geological disposal environments.
한국원자력연구원 부지 내에 위치한 지하처분연구시설(KAERI Underground Research Tunnel, KURT) 에서는 선진핵주기 고준위폐기물처분시스템(A-KRS)을 기반으로 고준위방사성폐기물을 처분하였을때, 예상되는 공학적방벽(Engineered Barrier System, EBS)과 자연방벽(Natural Barrier System, NBS)에서의 열-수리-역학적 복합거동(Thermo-Hydro-Mechanical coupled behavior)의 특성을 규명하고자 현장시험(In-situ Demonstration of Engineered Barrier System, In-DEBS)을 2012년부터 계획 및 설계를 시작하여, 2016년 5월부터 지하처분연구시설 3번 연구 갤러리(Research gallery 3)에서 진행하고 있다. 현장시험의 데이터를 분석하고 열-수리-역학적 복합거동 특성을 명확히 규명하기 위해서는 경주 벤토나이트와 KURT 암석 및 암반의 열적, 수리적, 그리고 역학적 물성 특성을 반드시 파악하고 있어야만 한다. 이에 본 연구에서는 지금까지 수행된 KURT 부지 특성과 KURT 화강암 및 경주 벤토나이트의 열적, 수리적, 그리고 역학적 특성을 정리하고, 열적, 수리적, 그리고 역학적 모델을 제시하였다. 특히, 온도에 따른 암석의 열팽창계수 변화, 응력에 따른 암석의 투수계수 변화, 포화도에 따른 벤토나이트 및 암석의 열전도도 변화, 포화도에 따른 벤토나이트의 비열 및 흡입력 변화와 같은 열-수리-역학적 복합물성에 대한 다양한 모델을 도출함으로써, In-DEBS 현장시험 결과 분석과 열-수리-역학적 복합거동 특성 평가를 위해 수행 될 수치시험에 필요한 벤토나이트와 암석 및 암반의 입력자료를 제시하고자 하였다.
고준위방사성폐기물 심지층 처분 대상 암종으로 고려되는 화강암에서 방사성핵종의 장기 거동특성을 이해하기 위한 연구의 일환으로 KURT (KAERI Underground Research Tunnel) 화강암에 존재하는 우라늄의 용출특성에 대한 연구를 수행하였다. 반응 시작 후부터 10일 동안의 반응기간 중 다른 반응용액에 비해 CO3 2- 농도가 높은 UD-CO3 및 UD-Bg 반응용액에서 우라늄의 용출량이 다소 급격하게 증가하였다. 또한 Na 또는 Ca가 다량 함유된 반응용액에서 반응 60일 이후 우라늄 용출량이 다소 급격히 증가하였다. 각 반응용액에 의한 반응 270일까지의 우라늄의 용출량은 UD-CO3 (44.61 μg·L-1), UD-Bg (41.01 μg·L-1), UD-Na (26.87 μg·L-1), UD-Ca (20.26 μg·L-1), UD-CaSi (17.03 μg·L-1), UD-Si (10.47 μg·L-1)으로 지속적으 로 증가 하였으나, 반응 270일 이후 우라늄 용출량은 점차 감소하는 경향을 나타낸다. 이는 화강암 시료 내에 존재하는 우라늄이 반응용액과 상호반응에 의해 최대 용출될 수 있는 한계에 도달하였기 때문으로 판단된다. 우라늄 용출은 혼합된 반응 용액 내의 CO3 2- 존재와 수질의 지화학적 유형에 따라 우라늄의 용출 농도 및 용출 최대치가 나타나는 시점이 다르게 확인되 었다. 이는 시료와 반응용액의 상호반응 과정에서 용존이온의 영향에 의해 화강암시료와 반응용액 사이에 반응속도의 차이가 발생하는 것으로 판단된다.