검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.11 구독 인증기관·개인회원 무료
        Every engineering decision in radioactive waste management should be based on both technical and economic considerations. Especially, the management of low-level radioactive waste (LLW) is more critical on economic concerns, due to its long-term and continuous nature, which emphasizes the importance of economic analysis. In this study, economic factors for LLW management were discussed with appropriate engineering applications. Two major factors that should be taken into account when assessing economic expectations are the accuracy of the results and its proper balancing with ALARA philosophy (As Low As Reasonably Achievable). The accuracy of the results depends on the correct application of alternatives within a realistic framework of waste processing. This is because the LLW management process involves variables such as component type, physical dimensions, and the monetary value at the processing date. Two commonly used alternatives are the simplified lump sum present worth and levelized annual cost methods, which are based on annual and capital costs. However, these discussions on alternatives not only pertain to the time series value of operational costs but also to future technical advancements, which are crucial for engineers. As new research results on LLW treatment emerge, proper consideration and adoption should be given to technical cost management. As safety is the core value of the entire nuclear industry, the ALARA philosophy should also be considered in the cost management of LLW. The typical cost of exposure in man-rem has ranged from $1,000 to $20,000 over the past decades. However, with increasing concerns about health and international political threats, the cost of man-rem should be subject to stricter criteria, even the balancing of costs and safety concerns is much controverse issue. Throughout the study, the importance of incorporating proper engineering insights into the assessment of technical value for the financial management of LLW was discussed. However, it’s essential to remember that financial management should not be solely assessed based on the size of expenses but rather by evaluating the current financial status, the value of money at the time, and anticipated future costs, considering the specific context and timeframe.
        2.
        2022.05 구독 인증기관·개인회원 무료
        Near-surface disposal facility is more susceptible to intrusion than underground repository, resulting in more possible pathways for contaminant release. Alike human intrusion, animals (e.g. Ants, Moles, etc.) could intrude into the disposal site to excavate burrows, which could cause direct release of contaminants to biosphere. In this paper, animal intrusion is demonstrated using GoldSim’s commercial contaminant transport module and impact on the integrity of the near-surface disposal facility is evaluated in terms of fractional release rate of the contaminants. In this study, the near-surface disposal facility is modelled with a single concrete vault to contain radionuclide according to LLW concentration limit stated in NSSC notice No.2020-6. The release of contaminants is modelled to occur directly after the institutional control period, and the contaminants are mostly transported from the concrete vault to cover layers via diffusion. To produce mathematical model of the release of the contaminants due to animal intrusion, firstly, the fraction of burrow volume for each cover layer is calculated separately for each animal species, based on their maximum possible intrusion depth. In this study, fractions of burrow volume for ants and moles are calculated based on their maximum possible intrusion depths, where for ants is 2–3 m, and for moles is 0.1–0.135 m. Then, assuming that the contaminants are distributed homogeneously throughout each cover layers by diffusion, fraction of contaminants transported into the uppermost layer via excavation of the burrow is calculated for each layer based on burrow volume, and fraction of contaminants removed from the uppermost layer to the layers below via collapse of the burrow is also calculated based on the burrow volume. Lastly, the net transportation of contaminants into and out of the burrow via excavation and collapse, respectively, is calculated and demonstrated using direct transfer rate function of the GoldSim. Based on the simulated result, the maximum mass flux is too minor to cause a meaningful impact on the safety. The peak mass flux of the most sensitive radionuclide, I-129, is witnessed at around year 1,470, with a flux value of 5.36×10−6 g·yr−1. This minor release of the contaminants could be due to cover layers being much thicker than the maximum possible intrusion depth of the animals, preventing the animal intrusion into the deeper layers of higher radionuclide concentration. In future, this study can be used to provide a guidance and fundamental data for scenario development and safety evaluation of the near-surface disposal facility.
        5.
        2016.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        방사성폐기물용기의 설계는 용도 (운반, 저장, 처분)의 안전요건에 부합돼야 할 뿐 아니라 경제성과 기술적 기준도 만족해야 한다. 이러한 기준은 장차 원전해체로부터 발생할 다량의 저준위/극저준위 해체폐기물의 관리에도 해당된다. 해체폐기물의 특성은 원전운영에서 발생하는 방사성폐기물과는 매우 다르므로 적합한 용기의 개발이 요구된다.이 논문은 다목적용도의 표준용기 개발을 제시한다. 이 개념은 경주처분장과 같은 국가 인프라를 고려한 원전해체폐기물의 관리를 최적화하기 위한 용기이다. 이 연구는 일련의 시제품을 설계 또는 제작한 것이다 : 극저준위용 소프트백, 저준위용 금 속용기 (해상운반용 표준 IP2 용기 및 도로운반용 ISO 용기), 이들 용기 설계의 안전성 분석을 위한 시뮬레이션 및 시험결과 는 규제요건에 잘 부합되는 것으로 나타났다. 콘크리트 용기의 후속개발은 2016년에 수행예정이다.
        4,300원