In order to investigate the PM10 concentration trend and its characteristics over five different sub area in Busan from 2013 to 2015, data analysis with considering air flow distribution according to its topography was carried out using statistical methodology. The annual mean concentrations of PM10 in Busan tend to decrease from 49.6㎍/m³ in 2013 to 46.9㎍/m³ in 2015. The monthly mean concentrations value of PM10 were high during spring season, from March to May, and low during summer and fall due to frequent rain events. The concentration of PM10 was the highest in five different sub-area in Busan. High concentration episodes over 90 percentile of daily PM10 concentration were strongly associated with mean daily wind speed, and often occurred when the westerly wind or southwesterly wind were dominant. Regardless of wind direction, the highest correlation of PM10 concentrations was observed between eastern and southern regions, which were geographically close to each other, and the lowest in the western and eastern regions blocked by mountains. Wind flow along the complex terrain in Busan is also one of the predominant factors to understand the temporal variation of PM10 concentrations.
The characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) related to local wind patterns around the Kori nuclear power plant (KNPP) were studied using WRF/HYSPLIT model. The cluster analysis using observed winds from 28 weather stations during a year (2012) was performed in order to obtain representative local wind patterns. The cluster analysis identified eight local wind patterns (P1, P2, P3, P4-1, P4-2, P4-3, P4-4, P4-5) over the KNPP region. P1, P2 and P3 accounted for 14.5%, 27.0% and 14.5%, respectively. Both P1 and P2 are related to westerly/northwesterly synoptic flows in winter and P3 includes the Changma or typhoons days. The simulations of P1, P2 and P3 with high wind velocities and constant wind directions show that 137Cs emitted from the KNPP during 0900~1400 LST (Local Standard Time) are dispersed to the east sea, southeast sea and southwestern inland, respectively. On the other hands, 5 sub-category of P4 have various local wind distributions under weak synoptic forcing and accounted for less than 10% of all. While the simulated 137Cs for P4-2 is dispersed to southwest inland due to northeasterly flows, 137Cs dispersed northward for the other patterns. The simulated average 137Cs concentrations of each local wind pattern are 564.1~1076.3 Bqm-3. The highest average concentration appeared P4-4 due to dispersion in a narrow zone and weak wind environment. On the other hands, the lowest average concentration appeared P1 and P2 due to rapid dispersion to the sea. The simulated 137Cs concentrations and dispersion locations of each local wind pattern are different according to the local wind conditions.