검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to obtain high conversion efficiency of NH3 and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag–xCu (0≤ x ≤6)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type Ⅱ adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of Ag2O, CuO and CuAl2O was observed by XRD analysis. In the low temperature(150∼200 ℃), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, NO2) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.
        4,000원
        2.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the selective oxidation reaction of gaseous ammonia at a low temperature, various types of metal-impregnated activated alumina were prepared, and also physical and chemical properties of the conversion of ammonia were determined. Both types of metal (Cu, Ag) impregnated activated alumina show high conversion rate of ammonia at high temperature (over 300℃). However, at lower temperature (200 ℃), Ag-impregnated catalyst shows the highest conversion rate (93%). In addition, the effects of lattice oxygen of the developed catalyst was studied. Ce-impregnated catalyst showed higher conversion rate than commercial alumina, but also showed lower conversion rate than Ag-impregnated sample. Moreover, 5 vol.% of Ag activation under hydrogen shows the highest conversion rate result. Finally, through high conversion at low temperature, it was considered that the production of NO and NO2, toxic by-products, were effectively inhibited.
        4,000원
        3.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 VOC 배출원 중 도장, 인쇄 공정에서 주요 발생물질인 톨루엔을 저온 분해할 수 있는 귀금속 팔라듐촉매 개발에 목적을 두고 있다. 팔라듐은 톨루엔 제거에서 활성이 우수하지만 비용이 높다. 따라서 실용성의 방안으로 Pd 담지량의 최소화 비율(0.1~1.0wt%)로 제조한 촉매의 활성을 측정하였다. 그 결과 1.0wt% Pd(R) 촉매가 모든 조건에서 가장 높은 활성을 나타내었다. 이는 SEM 촬영과 XRD 분석을 통해 촉매 제조과정에서 Pd의 담지량 및 소성 분위기에 따른 분산 형태와 연관이 있는 것으로 사료된다.
        4,000원
        4.
        2009.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon dioxide as gate dielectrics was grown at 400˚C on a polycrystalline Si substrate by inductively coupled plasma oxidation using a mixture of O2 and N2O to improve the performance of polycrystalline Si thin film transistors. In conventional high-temperature N2O annealing, nitrogen can be supplied to the Si/SiO2 interface because a NO molecule can diffuse through the oxide. However, it was found that nitrogen cannot be supplied to the Si/SiO2 interface by plasma oxidation as the N2O molecule is broken in the plasma and because a dense Si-N bond is formed at the SiO2 surface, preventing further diffusion of nitrogen into the oxide. Nitrogen was added to the Si/SiO2 interface by the plasma oxidation of mixtures of O2/N2O gas, leading to an enhancement of the field effect mobility of polycrystalline Si TFTs due to the reduction in the number of trap densities at the interface and at the Si grain boundaries due to nitrogen passivation.
        4,000원
        5.
        2008.08 KCI 등재 서비스 종료(열람 제한)
        The formation of ConTiOn+₂ compounds, i.e., CoTiO₃ and Co2TiO₄, in a 5 wt% CoOx/TiO2 catalyst after calcination at different temperatures has been characterized via scanning electron microscopy (SEM), Raman and X-ray photoelectron spectroscopy (XPS) measurements to verify our earlier model associated with Co3O4 nanoparticles present in the catalyst, and laboratory-synthesized ConTiOn+₂ chemicals have been employed to directly measure their activity profiles for CO oxidation at 100˚C. SEM measurements with the synthetic CoTiO₃ and Co2TiO₄ gave the respective tetragonal and rhombohedral morphology structures, in good agreement with the earlier XRD results. Weak Raman peaks at 239, 267 and 336 cm-1 appeared on 5 wt% CoOx/TiO₂ after calcination at 570oC but not on the catalyst calcined at 450˚C, and these peaks were observed for the ConTiOn+₂ compounds, particularly CoTiO3. All samples of the two cobalt titanate possessed O 1s XPS spectra comprised of strong peaks at 530.0±0.1 eV with a shoulder at a 532.2-eV binding energy. The O 1s structure at binding energies near 530.0 eV was shown for a sample of 5 wt% CoOx/TiO₂, irrespective to calcination temperature. The noticeable difference between the catalyst calcined at 450 and 570˚C is the 532.2 eV shoulder which was indicative of the formation of the ConTiOn+₂ compounds in the catalyst. No long-life activity maintenance of the synthetic ConTiOn+₂ compounds for CO oxidation at 100˚C was a good vehicle to strongly support the reason why the supported CoOx catalyst after calcination at 570˚C had been practically inactive for the oxidation reaction in our previous study; consequently, the earlier proposed model for the Co₃O₄ nanoparticles existing with the catalyst following calcination at different temperatures is very consistent with the characterization results and activity measurements with the cobalt titanates.