The purposes of this study were to investigate the median frequency (MDF) between initiation and termination of muscle contraction through surface electromyographic (sEMG) analysis and to propose the basis of clinical treatment for movement problems in early hemiparetic upper limbs. Thirteen patients who had stroke with onset less than 3 months prior to the study and seven control subjects participated in the study. The median frequency in initiation and termination of muscle contraction was recorded from wrist flexor and extensor muscles using the sEMG, with 3 second beeper signals, during maximal isometric wrist flexion and extension. Flexion and extension must be done as quickly and forcefully as possible. The results of the study were as follows: 1. The MDF of the onset and offset sections were significantly lower on the paretic than the nonparetic and control sides. 2. The MDF of the offset section significantly decreased on the paretic and nonparetic sides. Consequently, this study showed that the lowering of the MDF was due to the hemiparetic wrist motor impairment and muscle weakness. These results are also related to Fugl-Meyer motor assessment (FMA) scores in hemiparetic upper limbs. This study also suggests that since muscle weakness of early stroke patients affects the functional decrease of upper limbs, further studies must focus on the treatment to improve muscle agility and muscle fiber recruitment efficiency that can induce the functional recovery correlated to motor control.
Median frequency can be regarded as a valid indicator of local muscle fatigue. As local muscle fatigue develops, the muscle fiber conduction velocity decreases, the fast twitch fibers are recruited less, and consequently the median frequency shifts toward the lower frequency area. The aim of this study was to test the characteristics of the median frequency according to exercise load (30% and 60% of MVC on the biceps brachii, 40% and 80% of MVC on the vastus lateralis) during the fatiguing isometric exercise. Thirteen healthy male volunteer students of Yonsei University were recruited. After the testing maximal voluntary isometric contraction, three variables (initial median frequency, regression slope, fatigue index) from the regression line of MDF data were measured in each exercise load. The results showed that the regression slope and fatigue index were significantly different for the biceps brachii, but not for the vastus lateralis initial MDF was not significant difference according to the exercise load on both muscles. The regression slope and fatigue index could monitor physiologic muscle change during fatiguing isometric exercise. The results showed that two MDF variables reflect the local muscle fatigue according to the exercise load.
19명의 건강한 성인 남자의 우세팔쪽 위팔두갈래근에서 피로가 생길 때까지 2.4초를 하나의 주기로 팔꿉을 반복적 등장성으로 굽히고 펴서 표면근전도 신호를 얻었다. 처리과정 A 중앙주파수(MDF )는 이 신호의 0.5초 구간을 power spectrum analy sis (PSA)로 계산하였는데 상당량의 잡음이 있었다. 중앙주파수의 잡음 양을 비교하기 위해, 동일한 표면근전도에서 3번까지 신호를 받았다 (2.4초 구간을 PSA로 계산한 처리과정 B, 13 point로 moving averages한 처리과정 C, digital low pass filter한 처리과정 D). 그리고 나서 그 신호의 중요 주파수 성분을 뽑아내었다. 위의 중앙주파수 자료와 시간간의 회귀직선을 분석하면 초기 중앙주파수, 회귀기울기, 그리고 피로지수와 같은 모수를 얻을 수 있다. 비모수 검정의 하나인 Kendall 기법으로 네 개의 처리과정간의 모수를 비교하였다. 통계결과 잡음이 처리과정 A보다 B,C,D에서 적었고, D에서 가장 적게 나타났다. 중앙주파수를 digital low pass 로 여과(filtering)함으로써 앞으로 있게 될 동적 운동 시 근피로 모니터기의 신뢰도를 높일 수 있다.
Many studies have shown that the initial median frequency (MDF) and slope correlate with the muscle fiber composition. This study tested the hypothesis that the initial MDF and slope are fixed, regardless of the interval at which data are collected. MDF data using moving fast Fourier transformation of EMG signals, following local fatigue induced by isotonic exercise, were obtained. An inverse FFT was used to eliminate noise, and characteristic decreasing regression lines were obtained. The regression analysis was done in three different periods, the first one third, first half, and full period, looking at variance in the initial MDF, slope, and fatigue index. Data from surface EMG signals during fatiguing isotonic exercise of the biceps brachii and vastus lateralis in 20 normal subjects were collected. The loads tested were 30% and 60% maximum voluntary contraction (MVC) in the biceps brachii and 40% and 80% MVC in the vastus lateralis. The rate was 25 flexions per minute. There were no significant differences in the initial MDF or slope during the early or full periods of the regression, but there was a significant difference in the fatigue index. Therefore, to observe the change in the initial MDF and slope of the MDF regression line during isotonic exercise, this study suggest that only the early interval need to be observed.
Fatigue is the decline in force produced as a result of prolonged muscle activity. Localized muscle fatigue can be identified by a shift toward low in the frequency components of the EMG signal, typically represented by a fall in the median frequency. Previous studies show that a shortened muscle develops a higher fatigue than elongated muscles. The purpose of this study was to investigate the time-related change of median frequency and torque during maximal isometric back extension exercises at different exercise angles (, , , ). Twenty healthy subjects (mean age = ) were evaluated in this study. Median frequency was extracted from the EMG signals by fast Fourier transform (FFT). Initial median frequency and the slope of median frequency change over time were computed from linear regression analysis. Pearson's product moment correlation was used to quantify the relationship between slope of median frequency and torque. The results were as follows: 1) Significant differences in y-intercepts of torque regression equation with respect to exercise angle were shown. However, there were no differences in the slopes of the median frequency and torque, and y intercept of the median frequency among exercise angles. 2) There was no significant correlation between slope of median frequency and torque. 3) But there was moderate correlation between median frequency and torque at each exercise angle. In conclusion, the exercise angle during maximal isometric back extension exercise is not a direct effect on slope of median frequency and torque. But results showed that median frequency and torque shift were highly correlated in all subjects.