We report a highly sensitive NO2 gas sensor based on multi-layer graphene (MLG) films synthesized by a chemical vapor deposition method on a microheater-embedded flexible substrate. The MLG could detect low-concentration NO2 even at sub-ppm (<200 ppb) levels. It also exhibited a high resistance change of ~6% when it was exposed to 1 ppm NO2 gas at room temperature for 1 min. The exceptionally high sensitivity could be attributed to the large number of NO2 molecule adsorption sites on the MLG due to its a large surface area and various defect-sites, and to the high mobility of carriers transferred between the MLG films and the adsorbed gas molecules. Although desorption of the NO2 molecules was slow, it could be enhanced by an additional annealing process using an embedded Au microheater. The outstanding mechanical flexibility of the graphene film ensures the stable sensing response of the device under extreme bending stress. Our large-scale and easily reproducible MLG films can provide a proof-of-concept for future flexible NO2 gas sensor devices.
A novel electrode for an NO gas sensor was fabricated from electrospun polyacrylonitrile fibers by thermal treatment to obtain carbon fibers followed by chemical activation to enhance the activity of gas adsorption sites. The activation process improved the porous structure, increasing the specific surface area and allowing for efficient gas adsorption. The gas sensing ability and response time were improved by the increased surface area and micropore fraction. High performance gas sensing was then demonstrated by following a proposed mechanism based on the activation effects. Initially, the pore structure developed by activation significantly increased the amount of adsorbed gas, as shown by the high sensitivity of the gas sensor. Additionally, the increased micropore fraction enabled a rapid sensor response time due to improve the adsorption speed. Overall, the sensitivity for NO gas was improved approximately six-fold, and the response time was reduced by approximately 83% due to the effects of chemical activation.
Recently, one-dimensional semiconducting nanomaterials have attracted considerable interest for their potential as building blocks for fabricating various nanodevices. Among these semiconducting nanomaterials,, SnO2 nanostructures including nanowires, nanorods, nanobelts, and nanotubes were successfully synthesized and their electrochemical properties were evaluated. Although SnO2 nanowires and nanobelts exhibit fascinating gas sensing characteristics, there are still significant difficulties in using them for device applications. The crucial problem is the alignment of the nanowires. Each nanowire should be attached on each die using arduous e-beam or photolithography, which is quite an undesirable process in terms of mass production in the current semiconductor industry. In this study, a simple process for making sensitive SnO2 nanowire-based gas sensors by using a standard semiconducting fabrication process was studied. The nanowires were aligned in-situ during nanowire synthesis by thermal CVD process and a nanowire network structure between the electrodes was obtained. The SnO2 nanowire network was floated upon the Si substrate by separating an Au catalyst between the electrodes. As the electric current is transported along the networks of the nanowires, not along the surface layer on the substrate, the gas sensitivities could be maximized in this networked and floated structure. By varying the nanowire density and the distance between the electrodes, several types of nanowire network were fabricated. The NO2 gas sensitivity was 30~200 when the NO2 concentration was 5~20ppm. The response time was ca. 30~110 sec.
Ultra thin films of Tetra-3-hexadecylsulphamoylcopperphthalocyanine(HDSM-CuPc) were formed on various substrates by Langmuir-Blodgett method, where HDSM-CuPc was synthesized by attaching long-chain alkylamine(hexa-decylamine) to CuPc. The reaction product was identified with FT-IR, UV-visible absorption spectroscopies, elemental analysis and thin layer chromatography. The formation of Ultrathin Langmuir-Blodgett(LB) films of HDSM-CuPc was confirmed by FT-IR and UV-visible spectroscopies. A quartz piezoelectric crystal coated with LB films of HDSM-CuPc was examined as a gas sensor for N02 gas. HDSM-CuPc LB films were transferred to a quartz crystal microbalance(QCM) in the form of Z-type multilayers. Response characteristics of film-coated QCM to NO2 gas concentrations over a range of 100~600ppm have been tested with a thickness of 5~20 layers of HDSM-CuPc. Changes in frequency by adsorption of NO2 were increased With the number of LB layers and NO2 concentration, but the response time was slow.