검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the biogeochemistry management (BGC-MAN) model was applied to North and South Korea pine and oak forest stands to evaluate the Net Primary Productivity (NPP), an indicator of forest ecosystem productivity. For meteorological information, historical records and East Asian climate scenario data of Shared Socioeconomic Pathways (SSPs) were used. For vegetation information, pine (Pinus densiflora) and oak (Quercus spp.) forest stands were selected at the Gwangneung and Seolmacheon in South Korea and Sariwon, Sohung, Haeju, Jongju, and Wonsan, which are known to have tree nurseries in North Korea. Among the biophysical information, we used the elevation model for topographic data such as longitude, altitude, and slope direction, and the global soil database for soil data. For management factors, we considered the destruction of forests in North and South Korea due to the Korean War in 1950 and the subsequent reforestation process. The overall mean value of simulated NPP from 1991 to 2100 was 5.17 Mg C ha-1, with a range of 3.30-8.19 Mg C ha-1. In addition, increased variability in climate scenarios resulted in variations in forest productivity, with a notable decline in the growth of pine forests. The applicability of the BGC-MAN model to the Korean Peninsula was examined at a time when the ecosystem process-based models were becoming increasingly important due to climate change. In this study, the data on the effects of climate change disturbances on forest ecosystems that was analyzed was limited; therefore, future modeling methods should be improved to simulate more precise ecosystem changes across the Korean Peninsula through processbased models.
        4,500원
        2.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Net primary productivity (NPP) is considered as an important indicator for forest ecosystem since the role of the forest is highlighted as a key sector for mitigating climate change. The objective of this research is to estimate changes on the net primary productivity of forest in South Korea under the different climate change scenarios. The G4M (Global Forest Model) was used to estimate current NPP and future NPP trends in different climate scenarios. As input data, we used detailed (1 km × 1 km) downscaled monthly precipitation and average temperature from Korea Meteorological Administration (KMA) for four RCP (Representative Concentration Pathway) scenarios (2.6/4.5/6.0/8.5). We used MODerate resolution Imaging Spectroradiometer (MODIS) NPP data for the model validation. Current NPP derived from G4M showed similar patterns with MODIS NPP data. Total NPP of forest increased in most of RCP scenarios except RCP 8.5 scenario because the average temperature increased by 5°C. In addition, the standard deviation of annual precipitation was the highest in RCP8.5 scenario. Precipitation change in wider range could cause water stress on vegetation that affects decrease of forest productivity. We calculated future NPP change in different climate change scenarios to estimate carbon sequestration in forest ecosystem. If there was no biome changes in the future NPP will be decreased up to 90%. On the other hand, if proper biome change will be conducted, future NPP will be increased 50% according to scenarios.
        3.
        1991.04 KCI 등재 서비스 종료(열람 제한)
        The atmospheric carbon dioxide concentration is ever-increasing and expected to reach about 600 ppmv some time during next century. Such an increase of CO2 may cause a warming of the earth's surface of 1.5 to 4.5~circC , resulting in great changes in natural and agricultural ecosystems. The climatic scenario under doubled CO2 projected by general circulation model of Goddard Institute for Space Studies(GISS) was adopted to evaluate the potential impact of climate change on agroclimatic resources, net primary productivity and rice productivity in Korea. The annual mean temperature was expected to rise by 3.5 to 4.0~circC and the annual precipitation to vary by -5 to 20% as compared to current normal climate (1951 to 1980), resulting in the increase of possible duration of crop growth(days above 15~circC in daily mean temperature) by 30 to 50 days and of effective accumulated temperature(EAT=∑Ti, Ti~geq 10~circC ) by 1200 to 1500~circC . day which roughly corresponds to the shift of its isopleth northward by 300 to 400 km and by 600 to 700 m in altitude. The hydrological condition evaluated by radiative dryness index (RDI =Rn/ ~ell P) is presumed to change slightly. The net primary productivity under the 2~times CO2 climate was estimated to decrease by 3 to 4% when calculated without considering the photosynthesis stimulation due to CO2 enrichment. Empirical crop-weather model was constructed for national rice yield prediction. The rice yields predicted by this model under 2 ~times CO2 climatic scenario at the technological level of 1987 were lower by 34-43% than those under current normal climate. The parameters of MACROS, a dynamic simulation model from IRRI, were modified to simulate the growth and development of Korean rice cultivars under current and doubled CO2 climatic condition. When simulated starting seedling emergence of May 10, the rice yield of Hwaseongbyeo(medium maturity) under 2 ~times CO2 climate in Suwon showed 37% reduction compared to that under current normal climate. The yield reduction was ascribable mainly to the shortening of vegetative and ripening period due to accelerated development by higher temperature. Any simulated yields when shifted emergence date from April 10 to July 10 with Hwaseongbyeo (medium maturity) and Palgeum (late maturity) under 2 ~times CO2 climate did not exceed the yield of Hwaseongbyeo simulated at seedling emergence on May 10 under current climate. The imaginary variety, having the same characteristics as those of Hwaseongbyeo except growth duration of 100 days from seedling emergence to heading, showed 4% increase in yield when simulated at seedling emergence on May 25 producing the highest yield. The simulation revealed that grain yields of rice increase to a greater