This study investigated the effects of L-carnitine (LC) and nicotinic acid (NA) on sperm viability during liquid storage at 18℃ in miniature pigs. 10 μM LC and 30 mM NA, combined LC and NA (LN) were treated in fresh semen for 3, 7, and 10 days. In results, sperm survival increased in NA- and LN-treated semen on 7 and 10 days (p<0.05), mitochondrial integrity of live sperm increased in LN-treated semen on 7 days (p<0.05), but not NA-treated semen. In addition, we examined the acrosome reaction of sperm in miniature pigs. LC and NA did not influence on acrosome reaction of boar sperm. In conclusion, LC and NA effectively maintained the viability and quality of sperm during long-term storage in miniature pigs, suggesting that the combined LN may be useful for improving the semen extender for long-term liquid storage in pigs.
The objective of this study was to investigate the efficiency of nicotinic acid during in vitro fertilization (IVF) in frozen-thawed bull sperm . The ejaculated semen was diluted with Triladyl containing 20% egg-yolk and cryopreserved in liquid notrigen. The frozen sperm was thawed for 45 seconds in the 38℃ water bath. Sperm was diluted with IVF medium (Bovine-Oviduct medium; BO) containing 0, 15, 30 and 60 mM nicotinic acid (NA), which were incubated at 39℃, 5% CO2 for 0, 0.5, 1, 2 and 4h. The characteristics of frozen-thawed sperm were estimated with SYBR14/PI double staining for viability, FITC-PNA/PI for outer acrosomal membrane damage and Rhodamine123/PI for mitochondrial integrity using flow cytometry. And the sperm ability was analysed by Coomassie brilliant blue (CBB) staining for acrosome reaction state and Rose bengal staining for abnormality. Acrosome reaction and abnormality were analyzed using a microscope. In results, sperm viability was significantly higer in 30 mM group than 0 and 15 mM groups at 1 and 2 h (p<0.05). Outer acrosomal membrane damage was significantly lower in 30 mM group than 0 and 15 mM groups at 1, 2 and 4 h (p<0.05). And mitochondrial integrity was significantly higher in 30 mM group than 0 and 15 mM groups at 2 and 4 h (p<0.05). Also, acrosome reaction was significantly lower in 30 mM than 0 and 15 mM groups at 1 and 2 h (p<0.05) and abnormality was lower NA groups than 0 group at 1 h (p<0.05). In couclusion, we suggest that using the thawing medium containing NA for sperm dilution can be benefical for IVF in bulls
The objective of this study was to investigate the efficiency of nicotinic acid on sperm cryosurvival and fertilization ability in frozen-thawed boar semen. Boar semen was collected by glove-hand method and was frozen using freezing solution treated to 0, 5, 10 and 20 mM of nicotinic acid. The frozen sperm for sperm characteristic analysis was thawed such as viability, acrosome reaction, and mitochondrial integrity. The frozen-thawed sperm was estimated by SYBR14/PI double staining for viability, FITC-PNA/PI double staining for acrosome reaction and Rhodamine123/PI double staining for mitochondrial integrity using a flow cytometry. The embryo was estimated in vitro development and DCFDA staining for reactive oxygen species assessment. As results, frozen-thawed sperm viability was significantly higher in 5 and 10 mM (61.1 ± 1.5%, 64.7 ± 2.0%) of nicotinic acid than other groups (0 mM, 52.1 ± 2.3%; 20 mM, 47.8 ± 5.1%, P<0.05). The live sperm with acrosome reaction was significantly higher in 5 and 10 mM of nicotinic acid (26.1 ± 1.8%, 24.9 ± 1.5%) than other groups (0 mM, 35.3 ± 0.8%; 20 mM, 36.5 ± 1.9%, P<0.05). The live sperm with mitochondrial integrity was significantly higher in 5 and 10 mM (84.2 ± 3.6%, 88.4 ± 2.3%) of nicotinic acid than other groups (0 mM, 77.3 ± 4.4%; 20 mM, 73.3 ± 3.6%, P<0.05). Blastocyst rate of in vitro development was significantly higher in 10 mM (17.0 ± 1.3%) of nicotinic acid than other groups (0 mM, 9.4 ± 0.5%; 5mM, 12.6 ± 0.8%; 20 mM, 5.0 ± 1.0%, P<0.05). Moreover, total cell number was higher in 5 and 10 mM (53.6 ± 2.9%, 57.9 ± 2.8%) of nicotinic acid than other groups (0 mM, 41.0 ± 1.4%; 20 mM, 23.2 ± 2.8%, P<0.05). Hydrogen peroxide in embryos was lower in 5 mM nicotinic acid (0.7 ± 0.1%) than other groups (0 mM, 1.0 ± 0.1%; 10mM, 0.9 ± 0.0%; 20 mM, 1.4 ± 1.0%, P<0.05). In conclusion, nicotinic acid-treated semen improves cryosurvival and quality of spermatozoa. Also, the fertilized oocytes with nicotinic acid improve quality of embryo and blastocyst formation.
Objective of this study was to investigate the effect of nicotinic acid (NA) on the characteristics in fresh semen of miniature pig. We evaluated viability, acrosome reaction and mitochondrial integrity of sperm on 0, 3, 7 and 10 days during storage period with nicotinic acid. As results, the survival rate of sperm in 15 mM NA (day 3, 87.8 ± 1.2%; day 5, 84.0 ± 2.7%; day 7, 82.2 ± 0.9%) and 30 mM NA (day 3, 87.7 ± 0.3%; day 5, 84.4 ± 2.5%; day 7, 82.3 ± 0.7%) groups were higher than control and 5 mM NA groups in 3, 7 and 10 days of semen storage. The NA-treated sperm on 10 day was used day for observing acrosome integrity. The survival sperm with acrosome reaction was higher in 30 mM NA group (day 3, 2.7 ± 0.2%; day 5, 3.3 ± 0.6%; day 7, 11.4 ± 0.3%) than in the control, significantly (P<0.05). Moreover, the live sperm with mitochondrial integrity was higher in whole treatment groups of NA than control group, significantly (P<0.05). Specially, most mitochondrial integrity on 10 day of semen storage was significantly higher in 30 mM NA group (90.2 ± 1.6%) than other treatment groups (control, 81.8 ± 3.1%; 5 mM NA, 83.4 ± 3.0%; 15 mM NA, 89.1 ± 0.7%, P<0.05). In conclusion, supplement of NA in liquid semen of miniature pig can improve and maintain semen quality, such as viability, acrosome reaction, and mitochondria integrity.
Transdermal therapeutic system(TTS) is often used as the method of drug dosage into the epidermic skin. Natural polymer were selected as ointment material of TTS. We investigated the permeation of natural polymer ointment containing drug in rat skin using horizontal membrane cell model. Permeation properties of materials were investigated for water-soluble drug such as Nicotinic acid N-oxide in vitro. These results showed that skin permeation rate of drug across the composite was mainly dependent on the property of ointment base and drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate. This result suggests a possible use of natural polymer ointment base as TTS of antihyperlipoproteinemic agent.