There has been growing concern over the emissions of formaldehyde and VOCs from automotive interior materials, as these could have an important impact on the in-vehicle air quality (IVAQ) of automotive vehicles. Odor, the components of which may include VOCs, refers to the automotive interior smell emitted directly or indirectly from any part of an automotive interior, based on human olfactory senses and a comfort evaluation of vehicle quality. The objective of this paper is to compare the instrument analysis with the sensory characteristics of an odor using GC/MS/Olfactometry. From the test, it was possible to identify the cause of odor, which can be difficult to distinguish among multiple odors, through the simultaneous performance of instrumental analysis and sensory evaluation.
There has been growing concern over the emissions of formaldehyde and VOCs from automotive interior materials, as these could have an important impact on the in-vehicle air quality (IVAQ) of automotive vehicles. Odor along with VOCs refers to the automotive interior smell emitted directly or indirectly from any part of an automotive interior, based on human olfactory senses and a comfort evaluation of vehicle quality. The objective of this paper is to compare the odor intensity using GC/MS analysis method and odor sensory test in accordance with ISO 12219-2. For the compounds having low odor threshold value and high VOC concentration, it was found that there was the same tendency in each field of odor whether the instrument analysis method or the odor sensory test method was used.
The purpose of this study was to investigate the odor arising from the Cheong-ju industrial complex area for odor materials confirmation, and to predict the impact of the odor in the residential area using the CALPUFF Model. Among the odor causing substances in the area with a rising number of collective complaints due to odor, methyl sulfide, acetaldehyde, propionaldehyde, n-buthylaldehyde, n-valeraldehyde and styrene were detected. Odor causing substances detected in the area surrounding the industrial complex include ammonia, hydrogen sulfide, n-buthylaldehyde, toluene, xylene, benzene and styrene. Using the CALPUFF Model, it was predicted that 1hr average was 3.981~7.553 OU/m3 and 24hr average was 1.753~2.359 OU/m3. In terms of odor intensity, the predicted 1hr average was 0.6~0.9 and the 24hr average was 0.2~0.4.
Odorous compounds produced from blackwater commonly cause domestic nuisance complaints. In this study, aseries of experiments was conducted to apply an electrolytic oxidation system to abate the odor problems fromblackwater. The electrolytic process removes odorous compounds from the liquid sources using direct and indirectoxidation; therefore, the system performance mainly relies on electrode materials. Four different electrodematerials, SS304, SS316, Ti, Ti/IrO₂, were applied, and the electrolytic oxidation showed that hydrogen sulfideand organic constituents were effectively removed. However, the weights of electrodes, SS304 and SS316, weredecreased by 7.5~8% due to the electrochemical decomposition from the anode surface. In order to improve thedurability and economical feasibility, SS304 was used as the cathode while Ti/IrO₂ was used as the anode. Theelectrode combination with the different materials (Ti/IrO₂:SS304) showed the same odor removal efficiency asthat using the same material (Ti/IrO₂:Ti/IrO₂). Consequentially, the electrolytic reaction to oxidize odorous andorganic constituents in humane manure was strongly affected by the electrode materials, and its combination needsto be carefully selected to achieve better performance.
Changes in major volatile odor components (VOC) and sensory properties of kimchi during ripening for 4 days were investigated, and major VOCs of the raw materials of kimchi were also analyzed. Seven of eight major VOCs of kimchi originated mainly from garlic, while one originated from ginger. During 4 days of kimchi ripening, the amount of ethanol, which was substantially higher than that of other VOCs, increased continuously but decreased slightly on the fourth day. The amount of diallyl disulfide decreased during ripening, while that of allyl mercaptan decreased on the first day and increased slightly thereafter. The amount of methyl allyl sulfide, diallyl sulfide, and methyl trisulfide increased continuously during ripening, while that of dimethyl disulfide and methyl propyl disulfide increased until the second day and decreased thereafter. Scores of overall acceptability, taste, and odor for kimchi ripened for 2 days were significantly higher than those of other samples (p<0.05). The correlation between scores of overall acceptability and the amount of dimethyl disulfide or methyl propyl disulfide was higher than that of other VOCs.