검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        석유 정제 시설 등에서 발생하는 함유폐수의 처리는 폐수의 유류 허용한계를 넘기지 않기 위해 중요한 공정이다. 세라믹 멤브레인은 유류 처리에서의 높은 효율, 내화학성, 내열성, 기계적 안정성, 그리고 단순한 작동 원리 등의 장점을 가지 고 있어 함유폐수의 처리에 효과적이다. 그러나 세라믹 멤브레인은 원재료의 높은 가격 때문에 널리 사용되는 데에 한계가 있다. 최근에는 이를 해소하기 위해 플라이 애시나 점토를 사용하는 노력도 있었다. 이 리뷰는 세라믹 멤브레인의 효율과 제 작을 실리콘, 알루미나, 그리고 폐석탄회의 재료로 나누었다.
        4,000원
        3.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Large amounts of oily wastewater discharged from various industrial operations (petroleum refining, machinery industries and chemical industries) cause serious pollution in the aquatic environment. Although dissolved air flotation (DAF) separating oil pollutants using microbubbles represents current practice, bubble size cannot be selectively controlled, and lots of power is required to generate microbubbles. Therefore, to investigate performance of the DAF process, this study examined the distribution of different sizes of microbubbles resulting from changes in physical shear force via modifying shapes of a slit-nozzle without an additional power supply. Three types of slit-nozzles (different angle, shape and length of the slit-nozzle) were used to analyze the distribution of bubble size. At a slit angle of 60°, shear force was 4.29 times higher than a conventional slit, and particle size distribution (PSD) in the range between 2 and 20 μm more than doubled. Treatment efficiency of synthetic oily wastewater through the coagulation-DAF process achieved 90% removal of COD by injecting FeCl3 and PACl of 250 mg/L and 100 mg/L, respectively, and the same performance resulted using FeCl3 of 200 mg/L and PACl of 80 mg/L employing a slit-nozzle angle of 60°. This study shows that a coagulation-DAF process using a modified slit-nozzle can improve the pre-treatment of oily wastewater.
        4,000원
        4.
        1996.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An innovative batch electrolytic system consisted of electrolytic basin, which was equipped with DSA(Dimensionally Stable Anode) type insoluble electrode, Ti/IrO2 anode and H-C metal cathode, and flotation separator was developed for the efficient treatment of shipboard emulsified oily wastewater. The electorod cleance and current density of elecrolytic basin to ensure maximum treatment efficiency of oily wastewater was evaluated as 6 mm, 3 A/dm3, respectively. The electrolytic efficiency of oily wastewater was affected by the operationtemperature, and it means that the temperature controller to ensure the stabiity of the process is required. The conductivity in the electrolytic basin was increased with the percentage of sea water in the oily wastewater, and over 90% of treatment efficiency of oily wastewater could be obtained at 7% of sea water. The oil removal rate was increased according to the increase of the quantity of electricity, and the maximum value of electrilyic rate constant was 288 mgoil/A.min. The information obtained from this study might be used for development of an efficient continuous electrolytic system treating the emulsified oily wastewater.
        4,000원
        5.
        1996.06 KCI 등재 서비스 종료(열람 제한)
        An inverse fluidized-bed biofilm reactor (IFBBR) was used for the treatment of highly-emulsified oily wastewater. When the concentration of biomass which was cultivated in the synthetic wastewater reached to 6000㎎/L, the oily wastewater was employed to the reactor with a input COD concentration range of 50㎎/L to 1900㎎/L. Virtually the IFBBR showed a high stability during the long operation period although some fluctuation was observed. The COD removal efficiency was maintained over 90% under the condition that organic loading rate should be controlled under the value of 1.5 ㎏COD/㎥/day, and F/M ratio is 1.0㎏COD/㎏VSS/day at 22℃ and HRT of 12 hrs. As increasing organic loading rates, the biomass concentration was decreased steadily with decreasing of biofilm dry density rather than biofilm thickness. Based on the experimental results, It was suggested that the decrease in biofilm dry density was caused by a loss of biomass inside the biofilm.