검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 급속하게 발전하고 있는 유전자교정기술은 식물이 생산하는 특정 이차 대사산물의 집적을 유도하기 위한 식물대사공학연구에 아주 유용하게 이용되고 있다. 특히 이들 기술 들을 이용하여 만든 유전자교정 작물 중에 일부는 외래 DNA 단편이 잔존 하지 않기 때문에 기존의 유전자변형작물의 안전 관리규정에 적용되지 않을 수 있다는 장점이 있다. 따라서 본 리뷰는 phenylpropanoid 대사과정에 의하여 합성되는 다양한 종류의 이차대사산물을 집적시키기 위한 유전자교정 기술의 적용 연구결과 들을 조사하였다. 먼저, phenylpropanoid 생합성 대사과정에 관여하는 다양한 효소를 암호하는 유전자들을 목표로 하여 식물의 종에 따라 특이하게 집적되는 flavonoids, anthocyanin, 수용성 tannins, 로즈마린산 등의 집적을 유도하거나 화색을 변경하는 등의 성공적인 연구결과들을 검토하였다. 또한, phenylpropanoid 대사과정의 조절에 최종조절 스위치 역할을 하는 수많은 종류의 MYB 전사인자를 암호 하는 유전자를 목표로 하여 CRISPR 유전자교정을 시도한 연구결과들로부터 식물의 이차세포벽 형성에 관여하는 lignin, 물관부, cellulose 등의 생합성 조절 기작을 이해하고 MYB family에 속하는 수많은 종류의 유전자에 대한 개별적인 기능 분석 연구결과들을 조사 분석하여, 문제점 및 향후 연구 방향 등을 검토하였다.
        4,000원
        3.
        2018.10 서비스 종료(열람 제한)
        Background : Fagopyrum esculentum Moench (common buckwheat) is an important pseudocereal due to high agricultural and medicinal values. It contains various minerals, fiber, and flavonoids. Additionally, flavonoids in buckwheat have various health effects. Thus, this study is aim to optimize the concentration of chitosan, salicylic acid (SA), and jasmonic acid (JA), for the production of phenolics in germinated buckwheat using high-performance liquid chromatography (HPLC). Methods and Results : The treatment with 0.1% chitosan increased the accumulation of all 7 phenolic compounds compared with the control, 0.01 and 0.5% chitosan treatments (p < 0.05). Furthermore, the germinated buckwheat treated with JA at the specific concentrations of 50, 100, and 150 μM increased the accumulation of total phenolic compounds. The germinated buckwheat grown in 150 μM of JA showed the highest amount of total phenolics which was approximately 2.47 times higher than that of control. Particularly, the accumulation of gallic acid, rutin, catechin, chlorogenic acid, and (-)-epicatechin were approximately 2.00, 2.38, 1.76, 2.81, and 7.95 times higher in JA-treated buckwheat than in the control buckwheat samples. A total of seven phenolics, including gallic acid, catechin, chlorogenic acid, caffeic acid, (-)-epicatechin, benzoic acid, and rutin, were detected in germinated buckwheat. Apparently, JA and chitosan treatment enhanced the accumulation of phenolic compounds in the germinated buckwheat. Particularly, the treatments with 0.1 % chitosan and 150 μM JA were the most effective on the accumulation of phenolic compounds. According to the time-course analysis, a 72 h chitosan treatment enhanced the production of phenolics. Similarly, the germinated buckwheat treated with 48 and 72 h showed the accumulation of higher levels of phenolic compounds than the control buckwheat. Conclusion : This study aimed to optimize the concentrations and treatment period of elicitors, chitosan and JA, for the enhanced production of phenolic compounds in germinated buckwheat. Thus, these results might help build sturdy strategies to enhance the production of phenolics in germinated buckwheat as a good nutritional source for human consumption.
        4.
        2018.10 서비스 종료(열람 제한)
        Background : Agastache rugosa (A. rugosa), belonging to the Lamiaceae family, is a medicinal plant mainly distributed in Korea and contains various phenolic compounds revealing anti-fungal and anti-HIV properties. This study is aim to investigate change in phenylpropanoid content of flowers at different developmental stages using high performance liquid chromatography (HPLC) and quantitative real time polymerase chain reaction (qRT-PCR). Methods and Results : The variation in the transcriptional level of phenylpropanoid biosynthetic genes and phenylpropanoid contents in the flowers of A. rugosa at different developmental stages was analyzed. The transcript levels of phenylpropanoid biosynthesis genes, including ArPAL (phenylalanine ammonia-lyase), ArC4H (cinnamate 4-hydroxylase), and ArCHS (Chalcone synthase), were high in flowers at 1st stage compared with flowers at 2nd and 3rd stages. On the other hand, the expression levels of flavonoid biosynthesis genes, including ArTAT (tyrosine amino transferase), ArHPPR (hydroxyl phenylpyruvate reductase), and ArRAS (rosmarinic acid synthase), were higher in flowers at 3rd stage than those of flowers at 1st and 2nd. These results were consistent with HPLC analysis revealing that most phenolic compounds were higher in flowers at 1st and 2nd stage but the level of rosmarinic acid was the highest in 3rd stage. Conclusion : Our findings provide the information on change in phenylpropanoid biosynthesis in A. rugosa flowers at different developmental stages.
        5.
        2016.10 서비스 종료(열람 제한)
        Background : Momordica charantia L. (M. charantia) is a member of the family Cucurbitaceae, used as a medicine herb in traditional medicine. In this study, we present the sequencing, de novo assembly and analysis of the transcriptome of M. charantia and provide a global description of relationship between putative phenylpropanoid and flavonoid biosynthesis genes and alteration of phenylpropanoid and flavonoid content during different organs and plantlet of M. charantia. Methods and Results : The transcriptome of M. charantia was constructed by using an Illumina Nexteseq500 sequencing system. Out of 68,073,862 total reads, approximately 88,703 unigenes were identified with a length of 898 bp. Alternatively, transcriptomic data, 10cDNAs (McPAL, McC4H, Mc4CL, McCOMT, McCHS, McCHI, McF3H, McFLS, McDFR and Mc3GT) encoded phenylpropanoid and flavonoid biosynthetic genes. The expression levels and the accumulation of trans-cinnamic acid, benzoic acid, 4-hydroxyvbenzoic acid, p-coumaric acid, chlorogenic acid, caffeic acid, catechin hydrate, ferulic acid, and rutin were investigated in different organs and plantlets. Mainly, phenylpropanoids and flavonoids accumulated in leaves and flowers, whereas low levels accumulated in roots. Collectively, these results indicate that the putative McPAL, McC4H, McCOMT, McFLS, and Mc3GT might be key factors for controlling phenylpropanoid and flavonoid contents in M. charantia. Conclusion : In this study, we present the sequencing, de novo assembly and analysis of the transcriptome of M. charantia. We also compared gene expression and compound analysis of phenylpropanoid and flavonoid in different organs and plantlet of M. charantia. These results indicate that McPAL, McC4H, McCOMT, McFLS, and Mc3GT are key regulators of phenylpropanoid and flavonoid accumulation in M. charantia