본 연구에서는 열분해잔사유(Pyrolysis Fuel Oil, PFO)를 이용한 Pitch계 활성탄소섬유를 제조하였다. 제조한 Pitch안정화 섬유의 탄화 및 활성화 온도를 850, 880, 900 ℃로 달리하여 각각 다른 샘플의 기공형성에 대한 영향을 알아보기 위해 BET 와 SEM을 이용하여 비교 분석하였다. 세 가지 샘플 ACF850, ACF880, ACF900를 분석한 결과 ACF880의 비표면적과 미세 기공표면적이 각각 1,420 m2·g-1, 1,270 m2·g-1으로 가장 높았으며, 외부비표면적과 BJH흡착누적공극표면에서 가장 낮은 중기공표면적이 도출되었다. 또한 N2가스 등온흡착곡선을 분석한 결과, 미세기공의 분포가 균일한 것을 확인할 수 있었다. ACF880은 흡착률 및 흡착속도에서도 가장 높은 결과값을 보이며, 흡착속도는 미세기공표면적과 비례하며 중기공표면적과 반비례함을 알 수 있었다. 제조한 Pitch계 활성탄소섬유를 라돈 연속측정방법을 통해 48시간 동안 측정한 결과 샘플 모두 라돈 흡착성능을 보였다. 제 조한 샘플 중 ACF880이 34.0%로 가장 높은 흡착률을 보였으며, ACF850이 29.5%로 가장 낮은 흡착률을 나타내었다. 이는 비표면적이 높을수록 흡착률이 높아지는 것을 알 수 있었다. 이를 선형회귀선 기울기로 환산하여 흡착속도로 확인한 결과 ACF880이 -1.89로 가장 빠른 것을 확인하였으며, ACF900이 -1.48로 가장 낮은 흡착속도를 보여 미세기공표면적이 높을수 록, 중기공표면적이 낮을수록 흡착속도가 증가하는 것을 알 수 있었다.
The compressive strength and electrical resistance of pitch-based carbon fiber (CF) in cementitious materials are explored to determine the feasibility of its use as a functional material in construction. The most widely used CFs are manufactured from polyacrylonitrile (PAN-based CF). Alternatively, short CFs are obtained in an economical way using pitch as a precursor in a melt-blown process (pitch-based CF), which is cheaper and more eco-friendly method because this pitch-based CF is basically recycled from petroleum residue. In the construction field, PAN-based CFs in the form of fabric are used for rehabilitation purposes to reinforce concrete slabs and piers because of their high mechanical properties. However, studies have revealed that construction materials with pitch-based CF are not popular. This study explores the compressive strength and electrical resistances of a cement paste prism using pitch-based CF.
Isotropic pitch-based fibers produced from coal tar pitch with the melt-blowing method were carbonized at temperatures ranging from 800 to 1600oC to investigate their crystalline structure and physical properties as a function of the carbonization temperature. The in-plane crystallite size (La) of the carbonized pitch fiber from X-ray diffraction increased monotonously by increasing the carbonization temperature resulting in a gradual increase in the electrical conductivity from 169 to 3800 S/cm. However, the variation in the d002 spacing and stacking height of the crystallite (Lc) showed that the structural order perpendicular to the graphene planes got worse in carbonization temperatures from 800 to 1200oC probably due to randomization through the process of gas evolution; however, structural ordering eventually occurred at around 1400oC. For the carbonized pitch powder without stabilization, structural ordering perpendicular to the graphene planes occurred at around 800–900oC indicating that oxygen was inserted during the stabilization process. Additionally, the shear stress that occurred during the melt-blowing process might interfere with the crystallization of the CPF.
Isotropic pitch fibers were stabilized and carbonized for preparing carbon fibers. To optimize the duration and temperature during the stabilization process, a thermogravimetric analysis was conducted. Stabilized fibers were carbonized at 1000, 1500, and 2000℃ in a furnace under a nitrogen atmosphere. An elemental analysis confirmed that the carbon content increased with an increase in the carbonization temperature. Although short graphitic-like layers were observed with carbon fibers heat-treated at 1500 and 2000℃, Raman spectroscopy and X-ray diffraction revealed no significant effect of the carbonization temperature on the crystalline structure of the carbon fibers, indicating the limit of developing an ordered structure of isotropic pitch-based carbon fibers. The electrical conductivity of the carbonized fiber reached 3.9×10⁴S/m with the carbonization temperature increasing to 2000℃ using a four-point method.
Pitch-based carbon fiber tows were prepared from naphtha cracking bottom oil by reforming and carbonization. The relationship between exothermic heat and carbon contents of the fiber was investigated by changing the carbonization conditions. The carbon contents and the crystallinities of isotropic pitch-based carbon fibers were 86.8~93.8 wt% and 33.7~40.1%, respectively, which were linearly proportional to the increase of carbonization temperature from 700 to 1000℃. The exothermic heat (temperature increase) of fiber tows was measured in a short time, which was also linearly proportional to the increase of carbon contents due to the increase of crystallinity, even though the crystallinity was low. Therefore, the carbon contents or carbonization degree of fibers can rapidly and indirectly be estimated by measuring the surface temperature increase of fibers.
In this study, commercially available pitch-based carbon fibers of general grade were post-heat-treated using a boxtype high temperature furnace at 1800℃, 2000˚, 2200℃, and 2400℃, respectively. The fundamental characteristics of each heat-treated carbon fibers were investigated in terms of chemical composition, morphology, thermal stability, X-ray diffraction, single filament tensile test, and electrical resistivity. The result showed that the fiber properties were significantly influenced by the post-heat-treatment, indicating the greater effect with increasing treatment temperature. The carbon contents, thermal stability, and tensile properties of the carbon fibers used here were further increased by the post-heat-treatment, whereas the d-spacing between graphene layers and the electrical resistivity were reduced with increasing post-heat-treatment temperature.
Isotropic pitch-based carbon fiber has been activated by steam diluted in nitrogen in order to characterize the microporosity. Especially, 40 wt% burn-off ACFs were prepared from different conditions to compare the pore structure and size. The ACFs were thinly sliced to investigate the inside pores by TEM and image analyzer. As expected, the adsorption characteristics of these ACFs were quite different from one another because of different pore structure and size. Most pores are not slit-shaped but rather round. Small round micropores become broad and irregular as increasing the activation time and temperature.
The surface treatment of C-type isotropic pitch-based carbon fiber was carried out by anodic oxidation in 5 wt% NH4NO3 electrolyte. The changes of fiber surface and carbon fiber/ABS resin composites were characterized by SEM, XPS and mechanical properties test. The oxygen functional groups on the surface, such as hydroxyl (-C-OH), carboxyl (-COOH) groups etc., increased after oxidation. Tensile strength, flexural strength and modulus of carbon fiber/ABS composites were also enhanced. However, the impact strength decreased with the improvement of the surface adhesion between CF and matrix.
Partial mesophase (PM) pitch precursor was prepared from fluidized catalytic cracking-decant oils (FCC-DO) by chemical reaction in the presence of Br2. The PM pitch heated-treatment at 420℃ for 9 h exhibited the softening point of 297℃ with 23% yield, and 55% anisotropic content. The PM pitch precursor was melt-spun through circular nozzle by pressurized N2, stabilized at 310℃, carbonized at 700℃, 1000℃, and 1200℃. The enough stabilization introduced 16.4% of the oxygen approximately. The stacking height (Lc002) and interlayer spacing (d002) of the as-spun fibers were 4.58 nm and 3.45a and the value became minimum and maximum at 700℃ respectively in the carbonization procedure. The tensile strength increased with an increase in the heat treatment temperature exhibiting highest value of 750 MPa at 1200℃ carbonization.
CO2gas중에서 산화된 활성탄소섬유를 77K에서 질소흡착에 의해 흡착등온곡선을 구하였다. 미세공부피와 외부표면적은 t-법으로 구하였으며, 평균기공크기와 기공분포는 Dubinin-Astakhov법으로 구하여 기공발당과정을 고찰하였다. 산화반응 초기(약 40% burn-off까지)에 섬유내부에 발달하는 미세공은 burn-off가 40%를 넘으면 서서히 큰 미세공으로 성장하며, burn-off가 약 60%이상되면 미세기공은 확대 또는 합체되어 점차 중기공으로 성장하는 것으로 관찰되었다. 또한 고온산화반응으로 발달한 기공은 저온에서 생성된 기공보다 크다.