Various elements of Fabrication (FAB), mass production of existing products, new product development and process improvement evaluation might increase the complexity of production process when products are produced at the same time. As a result, complex production operation makes it difficult to predict production capacity of facilities. In this environment, production forecasting is the basic information used for production plan, preventive maintenance, yield management, and new product development. In this paper, we tried to develop a multiple linear regression analysis model in order to improve the existing production capacity forecasting method, which is to estimate production capacity by using a simple trend analysis during short time periods. Specifically, we defined overall equipment effectiveness of facility as a performance measure to represent production capacity. Then, we considered the production capacities of interrelated facilities in the FAB production process during past several weeks as independent regression variables in order to reflect the impact of facility maintenance cycles and production sequences. By applying variable selection methods and selecting only some significant variables, we developed a multiple linear regression forecasting model. Through a numerical experiment, we showed the superiority of the proposed method by obtaining the mean residual error of 3.98%, and improving the previous one by 7.9%.
깨다시 꽃게(Ovalipes punctatus)는 갑각류로서 우리나라에서 잡히는 매끈 꽃겟속, 주름 꽃 겟속, 톱날 꽃겟속, 민 꽃겟속, 두갈래 민꽃겟속 들 중에 하나이다. 대부분의 꽃게는 가공되지 않은 상태로 찜 또는 찜육 등 반 가공 형태로 산업화 되었지만 최근에 게로부터 생리활성을 나타내는 펩타이드를 생산하는 연구가 발표되고 있다. 본 연구는 항산화 기능성을 나타내는 펩타이드를 선별하고 생산 최저공정 확립에 연구를 수행 하였다. 사용된 효소 alcalase, bromelain, flavourzyme, neutrase, papain, protamex들 중에서 bromelain으로 생산된 꽃게육 단백질 가수분해물이 가장 높은 활성을 보여 주었다. 꽃게육 단백질의 bromelain 가수분해물의 펩타이드들의 분자량 분포는 500-3,200 Da로서 7 종류의 이상의 펩타이드들로 구성되었다. 가수분해물의 구성아미노산 분포는 항산화 기능성에 관련된 소수성 아미노산은 전체 42.54%를 차지하였다. 가수분해물의 최적 생산 수율 조건을 확립하기 위하여 공정 조건, 효소 반응 온도 40-60℃, pH 6-8, 효소의 농도 1–3%(w/v)로 표면반응 분석법을 수행한 결과 효소 반응온도 55℃, 반응 pH 6.5, 효소의 양은 3%(w/v)에서 결정되었다. 최적 조건에서 단백질 가수분해도는 최대 71.60%에 도달하였다.
식물 및 동물성 단백질 유래 펩타이드 형태의 단백질 가수분해물들은 항산화, 고혈압 완화, 면역조절, 진통완화 및 항균작용 등 생리활성이 있는 것으로 알려져 왔다. 본 연구는 건조 해삼으로부터 해삼육 슬러리를 제조하고 flavourzyme 프로티아제를 이용하여 단백질 가수분해 최적공정을 수행하였 다. 이어서 생산된 펩타이드의 항산화 특성을 연구하였다. 효소반응 최적공정은 표면반응 분석법을 이 용하여 수행을 하였고 공정의 범위는 반응온도 40-60 ℃, 반응 pH 6-8, 효소의 농도 0.5-1.5%(w/v) 이었다. 해삼의 단백질 최적 효소가수분해 공정조건은 효소 반응온도 48–50 ℃, 반응 pH 7.0–7.2, 효소 의 양은 1.0-1.1%(w/v)에서 결정 되었다. 이때 단백질 가수분해 수율은 43-45%에 도달하였다. 생산된 대부분 가수분해물의 분자량들은 전형적인 펩타이드인 분자량 500-3,500Da로 분포되었다. 펩타이드들 은 항산화 능력은 금속 킬레이션 능력(IC50, 1.25 mg/mL), DPPH 소거능(IC50, 3.40 mg/mL), 슈퍼옥사 이드 라디칼 소거능(IC50, 10.3 mg/mL), 하이드록시 라디칼 소거능(IC50, 22.11 mg/mL) 순서로 저해농 도가 낮음을 보여 주었다. 따라서 해삼 단백질 가수분해물은 건강 기능 식품소재로서 활용할 가치가 높 을 것으로 기대를 한다.
The demand for facility used in producing multi-products is changed dynamically for discrete and finite time periods. The excess or the shortage for facility is occurred according to difference of the facility capacity size and demand for facility through given time periods. The shortage facility is met through the outsourcing production. The excess facility cost is considered for the periods that the facility capacity is greater than the demand for the facility, and the outsourcing production cost is considered for the periods that the demand for facility is greater than the facility capacity. This paper addresses to determine the facility capacity size, outsourcing production products and amount that minimizes the sum of the facility capacity cost, the excess facility cost and the outsourcing production cost. The characteristics of the optimal solution are analyzed, and an algorithm applying them is developed. A numerical example is shown to explain the problem.
In an environment of global competition, the success of a manufacturing corporation is directly related to bow it plans and executes production in particular as well as to the optimization level of its process in general. This paper proposes a production
Recently, the cultivated area is reduced, the ratio of upland-field in the total cultivated area is increasing relative appeared in 36.2% in 1990 from 43.7% in 2013. If upland-field can be applied well designed-infrastructure, good income crop production is possible, however, maintenance of infrastructure and a significant portion of the upland-field is maintained under insufficient infrastructure. While imports of agricultural products expanded since the 2000s in progress, looking at the self-sufficiency of upland-field crops, it is reduced to from 90% to 42% for the pepper, it is from 90% to 74% for the garlic, cereals is reduced from 42% by 26%. As a result of these conditions, the competitiveness of farmers has weakened, the risk to meet the challenges of this area of production and supply reduction increased. This study was the first to conduct a basic evaluation index, data analysis and evaluation of indicators to diagnose the agricultural production capacity of the upland field. 12 kinds classified index of producing conditions from the natural environment and eight factors for the cultivation and production capabilities have developed for the assessment of productivity of upland-field (especially Kimchi cabbage). Through this regional imbalance was found, based on the production capabilities conditions are good in Haenam, Gangneung, Pyeongchang. 3 Regions have been low and the lowest Youngwol to 0.8992. Climate(Cultivation conditions) indicators of Mungyeong region is the highest, relatively low areas were in Taebaek. In particular, it is determined to be preferred that the area required for the enhancing the production environment based on providing the convenience for the producing and maintenance of the first production area. It is necessary Increasing part of mechanization, agro-industrial competitiveness through aggressive management plans for facilities as required in the process of post-harvest storage, processing, distribution line can be improved.