검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.05 구독 인증기관·개인회원 무료
        The acceptance criteria for low and intermediate level radioactive waste disposal facilities in Korea to regulate that homogeneous waste, such as concentrated waste and spent resin, should be solidified. In addition, solidification requirements such as compressive strength and leaching test must be satisfied for the solidified radioactive waste solidified sample. It is necessary to develop technologies such as the development of a solidification process for radioactive waste to be solidified and the characteristics of a solidification support. Radioactive waste solidification methods include cement solidification, geopolymer solidification, and vitrification. In general, low-temperature solidification methods such as cement solidification and geopolymer solidification have the advantage of being inexpensive and having simple process equipment. As a high-temperature solidification method, there is typically a vitrification. Glass solidification is generally widely used as a stabilization method for liquid high-level waste, and when applied to low- and intermediate-level radioactive waste, the volume reduction effect due to melting of combustible waste can be obtained. In this study, the advantages and disadvantages of the solidification process technology for radioactive waste and the criteria for accepting the solidified material from domestic and foreign disposal facilities were analyzed.
        2.
        2022.10 구독 인증기관·개인회원 무료
        There are generally two kinds of spent filter; one is spent filter media for mainly gaseous purification such as HEPA filter, the other is spent filter cartridge for liquid purification such as CVCS BRS cartridge type filter. The spent filter cartridge from liquid purification system has been storing in special shielding space in auxiliary building in NPPs since the beginning of 2006 according to the long term storage strategy for decaying short lived radionuclide and gaining the time for selecting practical treatment technology before final packaging. The spent filter cartridges generated Kori-1 reactor vary in their sizes as in length from 913 mm to 290 mm and range in radiation level from several hundred mSv per hour to below mSv per hour . It is high time that the spent filter cartridge is treated and packaged because LILW repository in Wolsung area is operating and Kori-1 reactor is scheduled to decommission. The spent filter cartridge is one of the wet solid wastes required of solidification. It is difficult for the spent filter cartridge to solidify because of their shape, structure, physical and chemical characteristics in addition to having high radiation level. NSSC notice defines that solidification of wet solid wastes include that solid material such as spent filter is encapsulated with cement, etc. as a form of macro-encapsulation. The radioactive waste acceptance criteria describes that non-homogeneous waste having above 74,000 Bq/g such as spent filter, dry active waste should be encapsulated with qualified material. Homogeneous waste such as spent resin, sludge, concentrated waste (liquid waste evaporator bottoms), etc. should be solidified complied with requirements except that spent filter which is allowed to encapsulate. It is needed to guide to the practice of these two requirements for spent filter. The sampling and test method is different between homogeneous solidification waste form and spent filter cartridge encapsulation waste form. For example, how core sample can be taken and how void space can be measured among spent filter cartridge in encapsulation waste form. The technical evaluation report for spent filter cartridge polymer encapsulation by US NRC has been reviewed and the technical position of US NRC was identified. As a result of review, improvement fields of waste acceptance criteria for spent filters are pointed out, and the technical position of US NRC for spent filter cartridge solidification is summarized. The recommendation on improvement directions for spent filter cartridge encapsulation is suggested.
        3.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        국내 3단계 매립형 처분시설은 2018년도 한국원자력환경공단의 중^저준위 방폐물관리시행계획에 의하면 주로 원전 해체 현장에서 발생하는 극저준위방폐물을 수용하기 위해 2019년 4월부터 2026년 2월까지 총 104,000드럼(2개 트렌치)을 수용 하기 위해 건설이 계획 중이다(총 2,246억원 투입). 이후 총 5개 트렌치에 260,000드럼이 총 34,076 m2의 면적에 단계적으로 수용되며 따라서 현재 한국원자력환경공단은 관련 인수기준을 마련 중에 있다. 극저준위방폐물 처분시설 인수기준의 경우 프랑스, 스페인 등이 전용 처분시설을 운영하면서 자국의 인수기준을 합리적으로 잘 준용하고 있으나 본 논문에서는 해체방 폐물의 처분에 가장 경험이 많은 미국의 처분시설을 고려하여 국내 매립형 처분시설에 우선적으로 반영되어야 할 사항이 있는지 분석하였고 이를 통하여 경주내 3단계 매립형 처분시설의 인수기준 마련에 도움이 되고자 하였다.
        4,300원
        5.
        2014.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        원자력발전을 지속가능한 에너지원으로 활용하기 위해서는 원전 해체 및 운영 과정에서 발생하는 방사성폐기물의 안전하고 효율적인 처분이 매우 중요하다. 방사성폐기물 종류는 다양하지만 해체과정에서 가장 많이 발생할 것으로 예상되는 극저준 위방사성폐기물 인수기준수립은 원전해체전략수립에 큰 영향을 줄 것으로 보인다. 본 연구에서는 영국과 미국의 극저준위 방사성폐기물처분장 인수기준을 경주에 건설 중인 원자력환경센터의 인수기준과 비교분석을 통해 향후 우리나라 극저준위 방사성폐기물 처분을 위한 폐기물 인수기준을 분석하고자 한다.
        4,000원