검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As awareness about the danger of radon in indoor air has increased, various studies have been conducted to reduce the source of radon. This study was performed to investigate the effect of radon mitigation technology in a railway tunnel. Radon barrier paint and radon shield membrane developed to reduce the concentration of radon in soil and construction material were applied in the tunnel. The tunnel was divided into three sections, A, B, and C, and radon barrier paint, a buffer section, and radon shield membrane were applied, respectively. After securing a sealing screen to the floor and division of each section, radon concentrations were measured and compared before and after each product was applied, and statistical significance was confirmed through the Wilcoxon signed rank test. Measurement was performed with the In-Situ Method and Closed Chamber Method. Radon concentration measured by the in-situ method changed in A section to 124.1 Bq/m2/day from 614.1 Bq/m2/day (79.8%, z=-2.521, p<0.05), in B section to 416.2 Bq/m2/day from 467.1 Bq/m2/day (10.9%, z=-0.980, p=0.327), and in C section to 47.3 Bq/m2/day from 645.6 Bq/m2/day (92.7%, z=-2.521, p<0.05). Radon concentration measured by the closed chamber method recorded a decrease in A section to 88.8 Bq/m3 from 364.2 Bq/m3 (75.6%, z=-2.201, p<0.05), in B section to 471.8 Bq/m3 from 583.3 Bq/m3 (19.1%, z=-0.700, p=0.484), and in C section to 115.9 Bq/m3 from 718.8 Bq/m3 (83.9%, z=-2.521, p<0.05). In addition to soil, it is very important to mitigate radon from building materials with a high contribution rate of radon in order to manage radon by source. Due to the spatial characteristics of railway tunnels, soil and wall concrete structures are exposed as they are, so it is considered that radon mitigation actions are required utilizing verified methods with high mitigation efficiency.
        4,000원
        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This experiment evaluated the efficiency of mechanical ventilation, one of the measures to reduce indoor radon concentration in residential spaces. In the most popular ventilation rates of the air conditioning system, the most efficient air conditioning system was confirmed by checking the time when the radon concentration reached the lowest level, the radon reduction rate, and the radon concentration that could be lowered as much as possible. The results showed a reduction rate of up to 80% or more as a result of conducting the experiment by blocking the inflow of outside air. It was confirmed that the time to reach the lowest concentration after starting the mechanical ventilation was about 6 hours to a maximum of 7 hours. Therefore, this study verified that indoor radon concentrations can be efficiently reduced by using a mechanical ventilation system.
        4,000원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Radon is a radioactive gas material, which is not detectable by humans because of the absence of color and odor. Radon gas can exist indoors through a number of pathways and long-term exposure to such material can affect the human body, which may result in serious health issues such as lung-cancer. It is thus essential to reduce and maintain indoor radon concentration in order that potential health risks from radon can be diminished. In order to achieve the aforementioned goals, it is requisite to utilize a practical detector which is capable of continuous radon monitoring. In relation to this, a recently developed prototype radon detector, i.e., RS9A, provides highperformance comparable to existing research-grade radon detectors for the purpose of continuous radon monitoring in the air. Furthermore, RS9A is a convenient piece of equipment for use by the public as it is compact in size and affordable. In this paper, we conducted continuous measurements of indoor radon concentrations by using sets of RS9A and evaluated the equivalence of RS9A in terms of quality assurance.
        4,000원
        4.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With increasing public awareness regarding radon, this study has been conducted with the aim of providing more accurate information about radon to the public. We investigated the radon emissions from gypsum boards, which are known to emit relatively higher levels of radon among the building materials available on the market. Radon emissions were measured over three weeks using the closed chamber method with nuclear track detectors. For ceiling materials, the arithmetic mean of the radon emissions was 43.8 ± 42.2 Bq/m3 (geometric mean: 28.9 ± 5.6), 156.2 ± 150.5 mBq/m2/h per unit area (geometric mean, 103.1 ± 2.7) and 21.1 ± 19.9 mBq/kg/h per unit mass (geometric mean: 14.4 ± 2.6). Regarding the wall materials, the arithmetic mean of radon emissions was 24.1 ± 24.0 Bq/m3 (geometric mean: 15.6 ± 2.6), 133.3 ± 143.4 mBq/m2/h per unit area (geometric mean, 76.8 ± 3.0) and 13.0 ± 10.4 mBq/kg/h per unit mass (geometric mean, 9.5 ± 2.3). According to the results of this study, higher radon concentrations and emissions were detected in the ceiling materials than in the wall materials, but these values were lower than those previously measured in building materials.
        4,000원
        5.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed at providing fundamental information for development of governmental policy on radon management, investigated the radon levels of residential homes nationwide. It also suggested the necessity for policy development which focuses on management of the degree of harm through the installation of radon alarm devices and radon reduction consulting for homes with radon readings in excess of recommended threshold. Results showed that the radon level of the subjects of this study, 1,167 houses, was 97.3 ± 65.8 Bq/m3. Regionally, Seoul had the highest level, while Jeju had the lowest. In the first round of the investigation, the number of houses, with radon level which exceeded the recommended threshold, 148 Bq/m3, was 171. However, as a result of the radon alarm installation and radon reduction consultation, the indoor radon level of 137 households decreased to less than the recommended threshold. In the second round of the investigation, 80% of the households, the radon concentration of which exceeded the current recommended threshold in the first round, appeared to maintain their radon concentration below the recommended threshold. As a result of the communication about radon's harmfulness and the installation of the radon alarm device for recognition of harmful environments. It could be deduced from this result that the communication about harm contributes to the reduction of radon.
        4,000원
        6.
        2013.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Developing proper reduction strategies of indoor radon which have been an important issue in Korea requires proper information on source characteristics a phosphate gypsum board which is a common building material used for inter-wall thermal protection in Korea could be a major source of indoor radon level. This study evaluated the correlation between indoor radon concentration and the attribution of gypsum board content in building materials. In this study we valuated indoor/outdoor radon from 58 facilities selected based on the information availability of gypsum content in the building material across 8 different cities in Korea. Our results showed that indoor radon concentrations were 2 to 3 times higher than outdoor but those results were not significantly attributed from gypsum contents in the building material. Indeed, phosphate content in gypsum board did not significantly play a role in indoor radon level variations. It is concluded that physical environmental condition such as temperature, relative humidity, radon exhalation rate out of each building materials, as well as pathway from external sources (e.g., soil) needs to be identified to develop indoor radon reduction strategies.
        4,000원
        7.
        2011.10 KCI 등재 서비스 종료(열람 제한)
        라돈(222Rn)은 지각의 암석이나 토양 또는 건축자재 중에 들어 있는 우라늄(238U)과 토륨(232Th)이 몇 단계의 방사성붕괴 과정을 거친 후 생성되는 무색무취의 불활성기체로 광산이나 지하같이 밀폐된 공간에 잘 축적된다. 호흡기를 통하여 폐로 유 입되고 라돈의 딸핵종이 폐나 기관지에 침적되어 폐암을 일으키는 원인이 된다. 사람의 생명을 다루는 의료기관에서의 라돈피 폭은 평상시 방사선피폭량이 많은 방사선관계종사자와 면역력이 약한 환자에게 큰 위험이 될 수 있다는 판단에 이 실험을 실 시하였다. 실험에 쓰인 계측기는 실시간 라돈측정기인 Professional Continuous Radon monitor이며 계측장소는 두 개의 병원 지하1 층에서 지상2층까지 층별로 오전 10시부터 오후 3시까지 측정 하였다. Professional Continuous Radon monitor계측결과는 최 소 14.8 Bq/㎥에서 최대 70.3 Bq/㎥로 국내기준치인 148 Bq/㎥이하로 나타났으며 유효선량은 최소 0.296 mSv에서 최대 1.406 mSv로 일년간 자연방사선으로부터 피폭되는 방사선량인 2.4 mSv의 10~58.3% 수준으로 나타났다.