The fracture behavior and mechanical characteristics of sintered rare-earth magnets were investigated. It shows that the fracture behavior and bending strength of the magnets obviously exhibit anisotropy. Sm-Co magnets tend to cleavage fracture in the close-packed (0001) plane or in the (10 11 ) plane. The fracture mechanism of Nd2Fe14B magnet mainly appears to be intergranular fracture. The anisotropy of fracture behavior and mechanical strength of sintered rare-earth magnets is caused mainly by the strong crystal-structure anisotropy and the grain alignment texture. The effects of Nd content, and Pr, Dy substitution on the impact stability of Nd2Fe14B magnets were also reported.
Neodymium(Dysprosium)-permanent magnets (Nd(Dy)-Fe-B Magnets) have necessity and potential to be recycled given their high criticality and important roles in various high-tech fields as well as the characteristics of being selectively disengaged from the assemblies in which they are used. This study focused on secondary material flow (downstream) of Nd(Dy)-Fe-B Magnets in South Korea. The quantitative information includes the primary data of each category (Emission - Collection - Disengagement - Resource Recovery - Remanufacturing) with domestic recycling situations of the magnets, which can contribute to more effective policy-making. As a result of the material flow analysis, this study provides the primary data of Nd and Dy at each stage and inhibiting factors (bottleneck) of Nd-Fe-B Magnets recycling and suggests the method for improvement of recycling of rare earth magnet.