검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        On pig farms, the highest mortality rate is observed among nursing piglets. To reduce this mortality rate, farmers need to carefully observe the piglets to prevent accidents such as being crushed and to maintain a proper body temperature. However, observing a large number of pigs individually can be challenging for farmers. Therefore, our aim was to detect the behavior of piglets and sows in real-time using deep learning models, such as YOLOv4-CSP and YOLOv7-E6E, that allow for real-time object detection. YOLOv4-CSP reduces computational cost by partitioning feature maps and utilizing Cross-stage Hierarchy to remove redundant gradient calculation. YOLOv7-E6E analyzes and controls gradient paths such that the weights of each layer learn diverse features. We detected standing, sitting, and lying behaviors in sows and lactating and starving behaviors in piglets, which indicate nursing behavior and movement to colder areas away from the group. We optimized the model parameters for the best object detection and improved reliability by acquiring data through experts. We conducted object detection for the five different behaviors. The YOLOv4-CSP model achieved an accuracy of 0.63 and mAP of 0.662, whereas the YOLOv7-E6E model showed an accuracy of 0.65 and mAP of 0.637. Therefore, based on mAP, which includes both class and localization performance, YOLOv4-CSP showed the superior performance. Such research is anticipated to be effectively utilized for the behavioral analysis of fattening pigs and in preventing piglet crushing in the future.
        4,000원
        3.
        2018.05 구독 인증기관·개인회원 무료
        Three CNN (Convolutional Neural Network) models of GoogLeNet, VGGNet, and Alexnet were evaluated to select the best deep learning based image analysis mothod that can detect pavement distresses of pothole, spalling, and punchout on expressway. Education data was obtained using pavement surface images of 11,056km length taken by Gopro camera equipped with an expressway patrol car. Also, deep learning framework of Caffe developed by Berkeley Vision and Learning Center was evaluated to use the three CNN models with other frameworks of Tensorflow developed by Google, and CNTK developed by Microsoft. After determing the optimal CNN model applicable for the distress detection, the analyzed images and corresponding GPS locations, distress sizes (greater than distress length of 150mm), required repair material quantities are trasmitted to local maintenance office using LTE wireless communication system through ICT center in Korea Expressway Corporation. It was found out that the GoogLeNet, AlexNet, and VGG-16 models coupled with the Caffe framework can detect pavement distresses by accuracy of 93%, 86%, and 72%, respectively. In addition to four distress image groups of cracking, spalling, pothole, and punchout, 22 different image groups of lane marking, grooving, patching area, joint, and so on were finally classified to improve the distress detection rate.
        4.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study evaluates the economic value of national highway construction projects using Real Option Pricing Models. METHODS : We identified the option premium for uncertainties associated with flexibilities according to the future's change in national highway construction projects. In order to evaluate value of future's underlying asset, we calculated the volatility of the unit price per year for benefit estimation such as VOTS, VOCS, VICS, VOPCS and VONCS that the “Transportation Facility Investment Evaluation Guidelines” presented. RESULTS: We evaluated the option premium of underlying asset through a case study of the actual national highway construction projects using ROPM. And in order to predict the changes in the option value of the future's underlying asset, we evaluated the changes of option premium for future's uncertainties by the defer of the start of construction work, the contract of project scale, and the abandon of project during pre-land compensation stages that were occurred frequently in the highway construction projects. Finally we analyzed the sensitivity of the underlying asset using volatility, risk free rate and expiration date of option. CONCLUSIONS: We concluded that a highway construction project has economic value even though static NPV had a negative(-) value because of the sum of the existing static NPV and the option premium for the future's uncertainties associated with flexibilities.
        4,800원
        5.
        2009.01 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 다목적댐의 효율적인 홍수관리와 조기 홍수 경보시스템의 정확성을 향상시키기 위하여 두 가지 모형이 제안되었다. 두 모형은 상류 유입 홍수량과 하류 하천의 홍수량을 실시간으로 예측할 수 있는 능력을 각각 가지고 있다. 이들 모형은 남강댐 상류와 하류 홍수량의 실측치와 모의치를 비교하여 보정 및 검정되었으며, 실제 상황에서 모형의 홍수량 예측 능력이 평가되었다. 상류 유입량 예측 모형은 Grey 시스템 이론에 근거하였으며, 모형의 예측능력을 고