Given the situation in the Republic of Korea that all nuclear power plants are located at the seaside, the interim storage facility is also likely to be located at seaside and the maritime transportation of Spent Nuclear Fuel is considered inevitable. The Republic of Korea does not have an independently developed maritime transportation risk assessment code, and no research has been conducted to evaluate the release rate of radionuclides from a submerged transportation cask in the sea. Therefore, there is a need to develop a technology that can assess the impact of immersion accidents and establish a regulatory framework for maritime transportation accidents. The release rate of radionuclides should be calculated from the flow rate through a flow path in the breached containment boundary. According to the cask design criteria, it is anticipated that even under severe accident conditions, the flow path size will be very small. Previous studies have evaluated fluid flow passing through micro-scale channel by integrating internal and external flows within and around a transport cask. As part of the evaluation, a comprehensive “Full-Field Model” incorporating external flow fields and a localized “Local-Field Model” with micro-scale flow paths were constructed. Sub-modeling techniques were employed to couple the flow field calculated by the two models. The aforementioned approach is utilized to conduct the evaluation of fluid flow passing through micro-scale flow paths. This study aims to evaluate fluid flow passing through micro-scale flow paths using the aforementioned CFD (Computational Fluid Dynamics) method and aims to code the findings. The Gaussian Process Regression technique, a machine learning model, is utilized for developing a mathematical metamodel. The selected input parameters for coding are organized and their respective impacts are analyzed. The range of these selected parameters is tailored to suit domestic environments, and computational experiments are planned through Design of Experiments. The flow path size is included as an input parameter in the coded model. In cases where the flow path size becomes extremely small, making it impractical to use CFD techniques for calculations, Poiseuille’s law is employed to calculate the release rate. In this study, a model is developed to evaluate the release rate of radionuclides using CFD and mathematical equations covering the whole possible range of flow path size in a lost cask in the deep sea. The model will be used in the development of a maritime transportation risk assessment code suitable for the situation and environment in Korea.
Barrier effect model developed by CRIEPI is used for the estimation of rate of radioactive material release from a transport cask submerged in the ocean. If the containment boundary of cask is broken in an accident during maritime transportation, the sea water comes into the cask cavity and the leaching of radioactive material occurs. If the release of radioactive material thorough the opening of the containment boundary of cask is less than the leaching rate of the radioactive material inside the cask, then the release rate is controlled by the saturation limit of the sea water inside the cask cavity. In this study, the release rate estimation using the barrier effect model is compared with the model used in other codes, such as MARINRAD. And by parameter study, important factors that affect the releaser rate are identified and prioritized. It is shown that the gap generated in the containment boundary is the key parameter that determine the release rate of the radioactive material and the leaching rate is the dominant parameter to determine the saturation time of the cavity sea water.
To obtain geographical range and growth–kinetics parameters of mottled sake (Beringraja pulchra) populations in the Yellow Sea, three mark–recapture experiments were carried out. Overall, 991 tagged individuals were released, and 4.1% of them were recaptured with the mean release period of 339 d (range, 8–1,420 d) and the mean growth rate of 1.4 cm mon–1 (female, 1.5 cm mon–1; male 1.3 cm mon–1). In the first experiment, 667 individuals were released at Heuksan Island from April to June, 2007–2009, and 30 individuals were recaptured mainly at the north and the north–east coasts of the island, indicating absence of migration to the south of the island. In the second experiment, 323 individuals were released at several fishing grounds scattered in the Yellow Sea in 2010–2013, and 11 individuals were recaptured at points deviated to all directions from the releasing points. As the last, one individual was released with pop–up satellite archival tag at a costal point (34°37.2’N, 124°59.3’E) off Hong Island on May 21, 2010. The tagged individual migrated to a north–east location (35°50.4’N, 126°03.6’E) of Eocheong Island by Aug. 25, 2010. The data archived for the three months in the tag indicated that the migration path had depths of 48–80 m and temperature of 12.6–14.4°C. The results indicated that mottled sake populations had a localized habitat ranges at the north of Heuksan Island and the west of Hong Island while growing at the rate of 1.4 cm mon–1.
플러그 육묘된 일일초와 살비아의 묘를 145mL 용적 의 사각형 플라스틱 포트에 peat(60%)와 perlite(40%) 로 구성된 인공토양을 채운 후 정식하였다. 완효성 비 료의 양이 배지의 EC와 식물의 생장에 미치는 영향을 구명하기 위하여 포트당 완효성 비료를(14-14-14 Osmocote, 14N-6.2P-11.6K) 0, 0.5, 1.0, 1.5, 2.0 또는 4.0g으로 각각 정량하여 정식 전 배지와 혼합하였다. 식물은 1일 1회 수돗물을 저면 관수하며 재배하였다. 배지의 EC는 식물의 종류와 관계없이 완효성 비료의 양이 증가할수록 높았다. 두 식물 모두에서 낮은 비료 농도에서는 식물체의 생육이 진전되어도 배지의 EC가 변하지 않았으나 2.0~4.0g 처리에서는 생육이 진전되 면서 배지의 EC가 낮아졌다. 일일초의 최대 엽면적, 초장과 건물중은 완효성 비료의 양이 2.0~4.0g 처리했 을 때 얻었으며 이때 배지의 EC는 생육 전기간 동안 1.0~1.7dS ·m−1 범위에 있었다. 살비아의 엽면적, 건물 중과 엽록소 함량은 완효성 비료의 양이 많을수록 증 가해서 4.0g 처리에서 최대를 보였으며 이때 배지의 EC는 생육 전기간 동안 1.0~4.0dS ·m−1 범위에 있었 다. 살비아의 초장은 2.0~4.0g 처리에서 최대를 보였다. 완효성 비료의 양이 증가 할수록 일일초의 식물체 내 N, P, K, Mg, S함량은 높았던 반면 Ca함량은 낮 았다. B와 Mn의 함량은 비료의 양이 적을수록 증가 하였다.
Objective of this research was to determine the effect of application rate of a slow release fertilizer (SRF) in three root media, peatmoss+vermiculite (1:1, v/v; PV), peatmoss+composted rice hall (1:1, v/v; PR), and peatmoss+composted pine bark (1:1, v/v; PB), on growth and nutrient contents of potted chrysanthemum 'Lima Honey'. All media contained polyacrylic acid sodium salt at a rate of 4.5g L-1. The fresh and dry weights at 43 days after transplanting did not show statistical differences among treatments in each root media. Elevated application rate of SRF increased fresh and dry weights at 80 days after transplanting in PV and PB media, but not in PR medium. Elevated application rates of SRF resulted in the increase of tissue phosphorus content and decrease of tissue Ca, Na, and Zn contents at both 43 and 80 days after transplanting. Elevated application rates of SRF resulted in the decrease of pH and increase of EC and concentrations of NO3- and P2O53-, K, Ca, and Mg in the soil solution of PV and PR media. The trends of those in PR media were also similar except NO3-. The differences among treatments in EC at 80 days after transplanting were less significant as compared to those at 43 days after transplanting in three media.
동전모양의 균열이 이상복합 실린더 계면에 존재하는 혼합모드 조건(I, II)에 대해 유한요소법을 사용하여 에너지해방율을 구하였다. 두재료의 탄성비와 노치율을 변화시켜 상업용 FEM 프로그램인 ABAQUS로부터 얻은 결과를 가상 균열법과 J 적분법에 적용하였으며 에너지해방율을 구하여 무차원함수로 표현하였다. 모드 II의 무차원 에너지해방율은 균열길이와 탄성비가 증가되면서 그 값이 증가됨을 알수 있었다. 반면, 모드 I의 무차원 에너지해방율은 탄성비가 증가하면서 그 값이 감소하며, 두재료의 탄성비가 3 이상인 경우에 균열길이가 증가되면서 무차원 에너지해방율이 감소하다가 다시 증가하게 나타났다. 또한 수치해석된 결과치를 무한판 실린더의 응력확대계수에 대한 정해와 비교하여 본 해석의 신뢰성을 확보하였다
예연소실식 디젤기관에 있어서 박용부하운전조건에 따른 연소특성을 규명하기 위해 예언소실의 압력데이터를 single-zone, single-chamber의 열역학적 해석에 적용하여 연소해석을 행한 결과 다음과 같은 결론을 얻었다. 1) 부하가 증가함에 따라 최고압력이 상승하고 그 위치가 크랭크각도상 후진되었다. 2) 착화 지연시간은 부하에 관계없이 거의 일정하고, 부하가 증가할수록 가연 혼합기 형성에 소요되는 흡열량은 겉보기로 감소하였다. 3) 예혼합 연소단계의 열발생 양상은 부하에 관계없이 거의 비슷하고, 예혼합 연소시간은 부하가 증가할수록 짧아졌다. 4) 부하가 증가함에 따라 예혼합 연소량은 다소 증가하나 일정 연공비 이상에서는 거의 일정했다. 5) 예혼합 연소분율은 부하가 증가함에 따라 감소했다.(이 논문의 결론부분임)
Release rate is one of the important items for the environmental impact assessment caused by radioactive materials in case of an accidental release from the nuclear facilities. In this study, the uncertainty of the estimated release rate is evaluated using Monte Carlo method. Gaussian plume model and linear programming are used for estimating the release rate of a source material. Tracer experiment is performed at the Yeoung-Kwang nuclear site to understand the dispersion characteristics. The optimized release rate was 1.56 times rather than the released source as a result of the linear programming to minimize the sum of square errors between the observed concentrations of the experiment and the calculated ones using Gaussian plume model. In the mean time, 95% confidence interval of the estimated release rate was from 1.41 to 2.53 times compared with the released rate as a result of the Monte Carlo simulation considering input variations of the Gaussian plume model. We confirm that this kind of the uncertainty evaluation for the source rate can support decision making appropriately in case of the radiological emergencies.