Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.
본 연구에서는 기존콘크리트와의 부착성능 및 수밀성을 향상하기 위해 기존의 현장에서 사용하는 초속경 시멘트에 PVA 분말수지, 나일론 섬유를 혼입한 보수재료를 개발하고 개발된 보수재료로 보수된 흄관의 보수 후 휨거동 평가를 수행하였다. 주요 실험변수는 PVA 분말수지, 나일론 섬유 혼입률 및 손상유형이며, 성능 실험으로는 압축강도와 보수재료 후 휨거동평가를 수행하였으며 개발된 보수재료는 PVA 분말수지 혼입량이 증가할수록 압축강도가 감소하는 경향이 나타났으며, 모든 배합에서 보수재료의 요구 성능을 충분히 만족하는 것으로 나타났다. 보수된 관 시험체들의 휨강도 실험결과, 나일론 섬유를 혼입하고 PVA분말을 적정량을 첨가하여야 보수재료의 성능이 최대가 되는 것으로 나타났다. 모든 시험체들의 휨거동은 다소 철근비가 작은 구조부재에서 나타나는 휨거동 양상을 보이는 것으로 나타나, 국내의 흄관에 배근되는 철선량이 다소 부족함을 추정할 수 있었다. 즉, 철선의 배근량이 다소 적어 콘크리트와 철선의 거동이 극한상태에 도달하기 전에 콘크리트에 균열이 발생되고 곧바로 콘크리트의 인장강도를 초과하여 파괴되는 것을 확인할 수 있었다.
In this study, chloride penetration in a repaired concrete using magnesium polymer ceramic (MPC) was assessed based on the NT BUILD 492. To investigate the effect of repaired material on chloride penetration, a cylinder OPC concrete specimen was fabricated and attached on the surface with MPC. Then, chloride penetration test was carried out on the combined concrete sample at a constant applied voltage (30 V) for 6 hours. It was found that most of chloride sources was passed though the interface between OPC and MPC, resulting in a loss of chloride in the material. Thus, it is needed to modify the conventional chloride penetration test for the repaired concrete specimen.
해양환경 하에서 염화물의 침투를 억제하여 부식 위험을 최소화함으로써 콘크리트 구조물의 공용기간을 연장할 수 있다. 효과적으로 구조물을 관리하기 위해 적절하게 유지관리하는 것이 필요하다. 본 연구에서는 효과적인 유지관리 전략을 세우기 위한 보수된 구조물의 유지관리비용 평가와 연계하여 구조물의 사용수명을 정량적으로 평가하는 방법을 제안하였다. Fick의 제2법칙으로부터Crank-Nicolson법에 기초한 유한 차분법을 제안하여 보수되지 않은 콘크리트 구조물과 보수된 콘크리트 구조물의 염화물 이온 분포를 예측하였다. 이를 이용하여 보수에 의해 연장 가능한 사용수명과 목표한 공용기간 동안에 필요한 보수 횟수를 평가하였다. 게다가보수 횟수와 콘크리트 교체 비용을 고려하여 총 유지관리 비용을 산출하였다. 마지막으로 제안된 방법의 적용성 검토를 위해 수치해석예제를 제시하였다.
이산화탄소에 의해 열화된 콘크리트 구조물의 보수 후 잔존수명을 평가할 때 보수재의 효과를 고려하기 위해 본 연구에서는 탄산화에 의해 열화를 받은 콘크리트 부재의 보수 후 재열화과정을 Fick's 확산(diffusion) 제1법칙을 이용하여 모델링함으로써 단면복구재에 의해 보수된 콘크리트 부재의 독특한 상황을 고려한 합리적인 예측식을 제시하였다. 연구결과는 보수재의 이산화탄소 확산 프로파일과 기존 구체콘크리트의 탄산화된 부분의 이산화탄소 확산 프로파일을 효과적으로 모델링할 수 있음을 보여줬다. 제시된 평가모델식에 대한 검증예제를 통해 보수재의 이산화탄소 확산지연효과를 확인할 수 있었으며 보수된 콘크리트 구조물의 보수 후 잔존수명을 객관적이고 수치계산적인 방법으로 평가할 수 있었다.