The seven-year research project entitled “Development of workflow for integrated 3D geological site descriptive modeling” is being carried out from 2023. This research is funded by Ministry of Trade, Industry, and Energy (MOTIE). Progress of the research is discussed here. The integrated 3D geological SDM (site descriptive model; GSDM hereafter) consists of three part; 1) three dimensional representation of geologic elements, 2) database for material properties and modeling results from SDMs of other disciplines (e.g., rock mechanics), and 3) a visualization tool for geology, material properties and modeling results. The GSDM is comparable to the GDSMs of SKB and POSIVA in its representation of geology by volume of geologic elements. However, our GSDM is different in that extra information of material properties and an extra tool for visualization is included in the GDSM. The rationale for incorporating material properties and a visualization tool into the GSDM is to expedite the development of the GSDM and SDMs of other disciplines by allowing single institution to integrate database and visualization with the GSDM. SKUA-GOCAD is used for representation of geologic surfaces for ductile and brittle shear zones, and also for surfaces for delineation of volumes of rock units. We have adopted SKUAGOCAD because the program offers powerful functions of interpolation including borehole data and geophysical prospecting. So far, we have tested the program for five different geologies, including sedimentary, high-grade metamorphic, and intrusive igneous geology. The test results are promising. Incorporation of data and modeling results for the SDMs of other disciplines is at conceptual stage. The working conceptual model involves the following steps, 1) to provide the modeler of other disciplines with surface information representing geologic elements, 2) the modeler returns not only material properties but the results of numerical analysis, and 3) incorporation of material properties and modeling results into database. Since the numerical codes in other disciplines adopt different types of formats for 3D geology, we plan to adopt the widely used FEM format prepared by Gmsh. The visualization tool will also adopt Gmsh for graphical representation of 3D geology as well as database for material properties and modeling results. When the working model of GSDM becomes available, rapid and significant progress is expected in the SDMs of other disciplines and related areas, for example, geotechnical investigation for deep geological repository.
Deep geological disposal with multiple barriers composed of engineered and natural barriers has been considered as the most suitable disposal method for high level nuclear wastes. In terms of the geological evaluation factors, brittle structures such as fractures and faults should be characterized around the repository site, because radionuclides transfer mainly with groundwater in the subsurface and groundwater flows through discontinuous brittle structures. The geological survey for the characterization of deep geological repository sites is widely conducted by narrowing the survey area from regional scale down to local scale, which could be divided into three steps: 1) using remote sense or geophysical survey, 2) trench and drill core logging including field survey based on the first step, 3) detailed geological survey in the tunnel. In this study, we analyzed the distribution of geological structures to derive the history of brittle deformation in and around the KURT (KAERI Underground Research Tunnel) site located in the KAERI (Korea Atomic Energy Research Institute). The bedrock of the KURT site is mainly consist of Jurassic two-mica granite, which is extensively intruded by andesitic dikes of Cretaceous with N-S to NE-SW strikes. The two-mica granite in the study area was deformed in a ductile deformation environment and has been overprinted by major geological structures such as faults, dikes, veins, and joints. From this study, we identified 8 brittle deformation events based on the cross-cutting relationship among the geological structures, which are obtained from the analyses in and around the KURT. In order to evaluate the reactivation and fluid flow potential of brittle structures, it is essential to determine the characteristics and ages of the brittle structures and the composed rocks around the site.
선진핵주기 고준위폐기물 처분시스템의 개념설계를 위하여 가상의 처분장 부지인 KURT 시설 부지의 지질조건에서 A-KRS의 입지 후보영역을 선정하였다. 부지의 모암은 한반도에 폭넓게 분포하는 중생대 화강암을 대표하는 것으로 열수변질작용을 받은 흔적이 있으며, 지표수와 지하수계는 일차적으로 지형의 영향을 받아 부지에서 남동진하여 금강으로 배출된다. 부지 내에서 확인된 단열대는 2 등급 규모로서 NS와 E-W 주향으로 우세하게 분포한다. A-KRS 입지 후보영역을 제안하기 위하여 부지 내에서 공간적으로 -500 m 심도까지 발달되는 것으로예상되는 단열대를 교차하지 않고 동시에 단열대로부터 50 m 이상의 충분한 이격거리를 갖는 조건에서 처분장 규모의 영역을 확보할 수 있는지를 분석하였다. 분석 결과, 본 부지의 중앙부에 우세하게 분포하 는 남북 방향의 주향을 갖는 단열대의 서쪽 영역의 -200 m 이하 심도에서 충분한 영역을 확보할 수 있는 것으로 확인되었다. 단열대의 분포 특성을 감안할 때 부지의 좌하단 영역이 지질학적, 수리지질학적 측면 에서 A-KRS 입지 영역으로 가장 양호한 것으로 판단된다.
중ㆍ저준위 방사성폐기물 처분 부지의 부지특성조사 결과를 이용하여 처분장 부지의 지하수 유동체계를 이해하기 위한 수치 모델링을 수행하였다. 부지의 투수성 단열대 및 암반단열의 분포 특성에 근거하여 단열망 모델을 구축하고, 이를 이용하여 생성된 10개의 수리전도도장을 지하수 유동 모델링에 반영한 추계론적 Hybrid-EPM 방법으로 수치 모델을 구성하였다. 10회의 지하수 유동 모델링 결과, 처분 부지의 지하수두 및 지하수 흐름은 지표 근처에서 지형적인 요소에 크게 지배를 받는 것으로 나타나며 처분장 심도에서는 주변에 존재하는 투수성이 높은 단열대에 의해 영향을 받음을 확인할 수 있었다. 특히, 처분 시설 건설 중 사일로 주변 지역에서 수위 강하가 크게 발생하는 것으로 분석되었다. 처분 시설 폐쇄한 후 지하수위는 1년 이내에 급속히 회복되며, 대략 2년이 지난 후 완전히 회복 될 것으로 분석되었다.