Background: This study has mainly focused on finding pharmacological effects of ginsenosides that can reduce the unwanted side effects of the cytotoxic anticancer drugs and are highly effective on prostate cancer, colorectal cancer, liver cancer, hormone-dependent breast cancer, triple-negative breast cancer, and brain cancer (neuroblastoma). Methods: Minor and rare ginsenosides (GS) of Rh2 which have a high absorption ability and excellent pharmacological actions were treated with the 6 different types of cancer cell lines and their anticancer activities were investigated by analyzing gene expressions associated with various cancers through qPCR and other relevant methods. Results: In cancer cells exposed to Rh2, cell viability and cell migration were reduced, and apoptosis was induced. Each cancer cell was divided into three groups according to the cell proliferation response by Rh2; 1) A group in which the cell viability decreases inversely to an increase in Rh2 treatment concentration; 2) A group in which the cell viability rapidly decreases in Rh2 treatment above a certain level of concentration; 3) A group in which the cell viability was not suppressed below 20-30% even with 100 μL of Rh2, the highest concentration used in this study. Conclusions: It was shown that Rh2 has a significant effect on inhibiting the proliferation of prostate cancer cells and hormone-dependent breast cancer cells.
Transition-metal-embedded carbon nanotubes (CNTs) have been accepted as a novel type of sensing material due to the combined advantage of the transition metal, which possesses good catalytic behavior for gas interaction, and CNTs, with large effective surface areas that present good adsorption ability towards gas molecules. In this work, we simulate the adsorption of O2 and O3 onto Rh-doped CNT in an effort to understand the adsorbing behavior of such a surface. Results indicate that the proposed material presents good adsorbing ability and capacities for these two gases, especially O3 molecules, as a result of the relatively large conductivity changes. The frontier molecular orbital theory reveals that the conductivity of Rh-CNT would undergo a decrease after the adsorption of two such oxidizing gases due to the lower electron activity and density of this media. Our calculations are meaningful as they can supply experimentalists with potential sensing material prospects with which to exploit chemical sensors.
We perform density functional theory calculations to study the CO and O2 adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and O2, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and O2 binding energy values, which are required for facile CO oxidation. On the other hand, the O2 binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than O2. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Ptbased CO-tolerant CO oxidation catalyst.
Comprehensive calculations of the Rh decoration effect on zigzag CNTs with n ranging from 7 to 12 were conducted in this work to understand the effect of Rh doping on geometric structures and electronic behaviors upon metallic and semiconducting CNTs. The obtained results indicated that Rh dopant not only contributes to the deformation of C-C bonds on the sidewall of CNTs, but also transforms the electron distribution of related complexes, thereby leading to a remarkable increase of the conductivity of pure CNTs given the emerged novel state within the energy gap for metallic CNTs and the narrowed energy gap for semiconducting CNTs. Our calculations will be meaningful for exploiting novel CNT-based materials with better sensitivity to electrons and higher electrical conductivity compared with pure CNTs.
Novel sulfonated poly(arylene ether sulfone)s multi-block copolymer membranes containing highly sulfonated hydrophilic blocks were synthesized. Different local concentration of sulfonic acid in their hydrophilic blocks affected chemical and physical properties of the SPAES. To investigate the effects of chemical composition on their membrane properties, different hydrophilic oligomers sharing same hydrophobic blocks gave us exact comparison of effect of hydrophilic blocks. The higher concentration of sulfonic acid groups resulted in higher proton conductivity under certain relative humidity conditions than that of the state-of-the-art perfluorinated sulfonic acid membrane and showed that the well-developed phase separation of SPAES.
The en-riched 58Ni powders are dissolved in acid solution and coated on a Cu target for proton irradiation at cyclotron to produce 57Co radioisotope. The condition of the plating bath and the coating process are determined using the en-riched powders. To establish the coating conditions for 57Co, non-radioactive Co ions are dissolved in an acid solution and electroplated on to a rhodium plate. The thermal diffusion of electroplated Co into a rhodium matrix was studied to apply a 57Co Mssbauer source. The diffusion depth from surface to matrix of Co is depended on the annealing temperature and time. The deposited Co atoms diffuse completely into a rhodium (Rh) matrix without substantial loss at an annealing temperature of 1200 for 4 hours.
곤충탈피호르몬의 비스테로이드계 길항제인 RH 5849는 엽침적법으로 처리했을 때 담배거세미나방(Spodoptera litura)의 전 유충 발육단계에 걸쳐서 거의 비슷한 값을 보여주었다(18.1~26.5 ppm). 4령 유충에서 섭식저해율은 처리농도에 따라 비례하였고, 4.2ppm 으로 엽침적처리된 양배추 엽편을 먹은 3령 유충의 체중증가는 처리 후 48시간 이후부터 정체되었다. 양배추와 담배의 전 식물체에 대한 RH 5849의 침투성 약효발현이 관찰되었는데, 약 20ppm(mg/kg soil)이하의 값이 양배추에서는 15일, 담배에서는 30일 가량 지속되었다
This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at 90℃ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[α]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.