이산화탄소 배출량 제한을 의무화하는 EEDI, SEEMP 등의 국제협약에 대응하기 위하여 선박의 에너지 절감장치(ESD, Energy Saving Device) 관련 국내기술 대응이 절실하다. 본 연구는 국내 중소형 조선소의 주력선종 효율 향상의 ESD를 설계하기 위하여 유동특성 분석에 대한 연구이다. 프로펠러 상단으로 유입되는 유동을 개선하기 위하여 bare hull의 선미벌브 및 빌지 주변의 유동특성을 수치해석과 모형시험을 통하여 정성적으로 분석하였으며, 선저압력 지점의 개선 및 프로펠러 상단 유입의 선미 빌지 유동 제어를 위하여 선미벌브와 빌지 사이에 수직평판을 부착하였다. 선미 선체표면 압력회복으로 전저항이 약 3.04 % 감소하였으며, 프로펠러 상단 유동 제어를 통해 평균 공칭반류가 약 18.8 % 감소하였다.
The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50˚ to 50˚. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.
Generally the side plate materials of FRP ship are composed of glass fiber and unsaturated polyester resin composites(GFRP composites). In this study, the effect of applied load and sliding speed on friction and wear characteristics of these materials were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and wear rate of these materials for SiC abrasive paper were determined experimentally. The cumulative wear volume showed a tendency to increase nonlinearly with increase of sliding distance and was dependent on applied load and sliding speed for these composites. The friction coefficient of GFRP composites was increased as applied load increased at same sliding speed in wear test. It was verified by SEM photograph of worn surface that major failure mechanisms were microfracture, deformation of resin, cutting and cracking.
선체를 구성하는 판부재는 일반적으로 면내하중과 횡하중의 조합하중이 작용하게 된다. 면내하중으로서는 주로 전체적인 선체거더의 휨과 비틀림에 의한 압축하중 및 전단하중이 있다. 횡하중은 수압과 화물압력에 의해서 작용하게 된다. 이러한 하중의 요소들은 항상 동시에 작용하는 것은 아니지만 한 개 이상의 하중이 존재하고 상호작용하게 된다. 그러므로, 좀 더 합리적이고 안정적인 선박구조의 설계를 위해서는 이러한 조합하중이 선체판에 작용할 경우에 발생하게 되는 좌굴 및 최종강도거동의 상호관계를 좀 더 자세히 분석할 필요가 있다. 실제로 선체판은 슬래밍과 팬팅과 같은 충격하중을 제외하고는 상대적으로 작은 수압이 작용하게 된다. 본 연구에서는 조합하중을 받는 선체판부재의 거동에 있어서 최종한계상태 설계법에 기반을 둔 탄소성대변형 유한요소해석을 수행하였다. 본 연구에서는 압축하중과 횡하중이 판부재에 작용하였을 경우 횡하중의 크기에 따른 2차좌굴 거동의 영향을 탄소성대변형 유한요소해석(ANSYS)으로 분석하였다.
지금까지의 강구조설계에서는 일반적인 탄성좌굴개념을 적용하고 있다. 왜냐하면 현재까지의 실적선의 데이터와 경험적인 방법에 의해 도출된 여러 가지 룰에 의한 데이터가 상당히 신뢰할만한 정도를 갖고 있기 때문이라고 판단하기 때문이다. 그러나, 최근들어 판두께가 박판인 고장력강재가 선체에 폭넓게 사용되어지면서 탄성좌굴발생 시점이 빨라졌으며 이에따른 탄소성거동을 정확히 예측할 필요성이 대두되고 있다. 이에 본 연구에서는 선체의 이중저 판넬구조에서 압축하중을 받을때의 실제판부재의 주변지지조건을 네가지로 이성화하여 해석하였으며, 이때 실제 필연적으로 존재하게 되는 열가공에 의한 비대칭형 초기처짐을 적용하였고, 비선형해석기법으로서는 Arc-length method를 적용하였고 해석코드는 범용유한요소법 소프트웨어로 잘 알려진 ANSYS를 사용하였다.
1. slam충격수 N(T)는 전부수선에서 거리가 증가할수록 감소하며, N(T)=1인 위치가 제한점으로 되며, 제한점이 되는 위치이후에서는 충격의 영향을 고려치 않아도 무방할 것으로 고려된다. 2. 충격력을 고려한 수직제한깊이는 계획흘수의 1/10로 잡았고, 충격응력에 대해서는 고려된 단면위치에서 압력작용속도의 상이로 인하여, 각각의 단면위치에서 전부선저의 몰입높이에 따라 각각 추정되어야한다. 3. 주어진 단면에 대한 충격력은 압력을 수직한계 높이까지 girth를 따라 계산함으로써 결정할 수 있다. 4. 최대충격력은 전부의 선저판의 형상에 따라 그 작용위치가 달라질 수도 있다. 5. 최대충격력의 약 50% 정도의 힘이 전부선저판의 충격에 소비됨으로, 이는 전부선저판의 적정치수 결정에 도움이 될 것으로 기대된다.
본 논문은 선체구조에 많이 이용되고 있는 보강판 구조물의 동적 특성을 최적 변경하는데 그 목적이 있다. 유한요소법(FEM), 동적 감도해석법, 최적구조 변경법을 이용하여 보강판의 동적 특성을 최적화한다. 먼저, FEM을 이용하여 보강판 구조물의 동적 특성을 해석한다. 다음으로 설계변수의 변화에 따른 동적 특성의 변화율을 동적 감도해석법으로 해석한다. 감도해석법으로 구한 감도값과 최적구조 변경법을 이용하여 설계변수들의 변경 량을 계산한다. 보강판 구조물의 고유진동수의 변경을 목적함수로 하고, 보강판의 두께와 보강재의 단면2차 모우멘트를 설계 변수로 한다. 본 논문에서 이용한 최적구조 변경법이 보강판 구조물의 동특성을 최적화하는데 유용함을 보여준다.
최근에는 고장력강의 사용증대와 함께 구조부재가 경량화추세에 있으며 이상부식이 발생한 구조부재는 강도가 크게 저하되리라 예상되지만 지금까지 이에 관한 연구가 거의 없는 상태이다. 본 연구에서는 단소성대변형유한요소법을 적용하여 국부이상부식을 가진 판이 면내압축하중을 받을 경우에 압축최종강도에 미치는 부식부영역의 크기. 부식부의 판두께 감소량 및 세장비의 영향에 대하여 연구하였다.
The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The main portion of ship structure is usually composed of stiffened plates. In these structures, plate buckling is one of the most important design criteria and buckling load may usually be obtained as an eigenvalue solution of the governing equations for the plate. To use the high tensile steel plate effectively, its thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. When the panel elastic buckling is allowed, it is necessary to get precise understandings about the post-buckling behaviour of thin plates. It is well known that a thin flat plate undergoes secondary buckling after initial buckling took place and the deflection of the initial buckling mode was developed. From this point of view, this paper discusses the post-buckling behaviour of thin plates under thrust including the secondary buckling phenomenon. Series of elastic large deflection analyses were performed on rectangular plates with aspect ratio 3.6 using the analytical method and the FEM.