In this study, factors considered to be causes of promotion of densification of sintered pellets identified during phase change are reviewed. As a result, conclusions shown below are obtained for each factor. In order for MA powder to soften, a temperature of 1,000 K or higher is required. In order to confirm the temporary increase in density throughout the sintered pellet, the temperature rise due to heat during phase change was found not to have a significant effect. While examining the thermal expansion using the compressed powder, which stopped densification at a temperature below the MA powder itself, and the phase change temperature, no shrinkage phenomenon contributing to the promotion of densification is observed. The two types of powder made of Ti-silicide through heat treatment are densified only in the high temperature region of 1,000 K or more; it can be estimated that this is the effect of fine grain superplasticity. In the densification of the amorphous powder, the dependence of sintering pressure and the rate of temperature increase are shown. It is thought that the specific densification behavior identified during the phase change of the Ti-37.5 mol.%Si composition MA powder reviewed in this study is the result of the acceleration of the powder deformation by the phase change from non-equilibrium phase to equilibrium phase.
This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: 8-16 μm (D50 = 4.3 μm), 10-20 μm (D50 = 6.92 μm), and 12-22 μm (D50 = 8.94 μm). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of 780oC and 830oC. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, Co3O4) and W-based (WO2) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.
A sintered body of TiB2-reinforced iron matrix composite (Fe-TiB2) is fabricated by pressureless-sintering of a mixture of titanium hydride (TiH2) and iron boride (FeB) powders. The powder mixture is prepared in a planetary ball-mill at 700 rpm for 3 h and then pressurelessly sintered at 1300, 1350 and 1400oC for 0-2 h. The optimal sintering temperature for high densities (above 95% relative density) is between 1350 and 1400oC, where the holding time can be varied from 0.25 to 2 h. A maximum relative density of 96.0% is obtained from the (FeB+TiH2) powder compacts sintered at 1400oC for 2 h. Sintered compacts have two main phases of Fe and TiB2 along with traces of TiB, which seems to be formed through the reaction of TiB2 formed at lower temperatures during the heating stage with the excess Ti that is intentionally added to complete the reaction for TiB2 formation. Nearly fully densified sintered compacts show a homogeneous microstructure composed of fine TiB2 particulates with submicron sizes and an Fe-matrix. A maximum hardness of 71.2 HRC is obtained from the specimen sintered at 1400oC for 0.5 h, which is nearly equivalent to the HRC of conventional WC-Co hardmetals containing 20 wt% Co.
This study investigates the microstructure and thermal shock properties of polycrystalline diamond compact (PDC) produced by the high-temperature, high-pressure (HPHT) process. The diamond used for the investigation features a 12~22 μm- and 8~16 μm-sized main particles, and 1~2 μm-sized filler particles. The filler particle ratio is adjusted up to 5~31% to produce a mixed particle, and then the tap density is measured. The measurement finds that as the filler particle ratio increases, the tap density value continuously increases, but at 23% or greater, it reduces by a small margin. The mixed particle described above undergoes an HPHT sintering process. Observation of PDC microstructures reveals that the filler particle ratio with high tap density value increases direct bonding among diamond particles, Co distribution becomes even, and the Co and W fraction also decreases. The produced PDC undergoes thermal shock tests with two temperature conditions of 820 and 830, and the results reveals that PDC with smaller filler particle ratio and low tap density value easily produces cracks, while PDC with high tap density value that contributes in increased direct bonding along with the higher diamond content results in improved thermal shock properties.
In order to investigate behavior of abnormal expansion of the iron-copper compacts, we compared the dilatometric curves of the compacts which mixed the copper powder to the iron powder with those of compacts which mixed the copper powder to the iron-copper alloy powder. The dilatometric curves were obtained below the sintering conditions, which heated up to 115 by a heating rate of 1/min, held for 60min at 115 and cooled down at a rate of 2/min to room temperature. The dilatometric curves of the compacts showed the different expansion behavior at temperatures above the copper melting point in spite of same chemical composition. All of the compacts of former case showed large expansion, but all of the compacts in latter case showed large contraction. The microstructures of sintered compacts also showed the different progress in alloying of the copper into the iron powder. Namely we could observe the segregation at alloy part of copper into iron powder in case of the sintered compacts, which mixed the copper powder to the iron powder, but could not observe the segregation in compacts which mixed the copper powder to the iron-copper alloy powder. But the penetration of liquid copper into the interstices between solid particles was occurred at both cases. Therefore, the showing of the different dimensional changes in the compacts in spite of same chemical composition is due to more the alloying of copper into iron powder than the penetration of liquid copper into the interstices between solid particles.