PURPOSES : Snow-removal performance is performed in this study to assess the feasibility of replacing calcium-chloride solution with sodium chloride solution at the minimum temperature of -5 ℃ during snowfall. METHODS : The atmospheric temperature distribution in Seoul was analyzed. The manufacturing, storage, and indoor melting performance of calcium-chloride and sodium-chloride solutions were evaluated, and on-site snow-removal performance was evaluated based on the solution type. RESULTS : According to the results of the melting performance test at -5°C, the melting capacity of the sodium chloride solution was expressed at a level exceeding 90% of that of the calcium chloride solution, indicating a similar melting performance between the two solutions. Additionally, based on the snow removal performance test using aqueous solutions, the snow removal performance of the sodium chloride solution was found to be approximately 96% compared to that of the calcium chloride solution, indicating minimal differences in snow removal performance due to changes in the type of solution. CONCLUSIONS : Similar snow-removal performance was achieved when the sodium chloride solution was used instead of calciumchloride aqueous solution at temperatures exceeding -5 ℃.
PURPOSES : The number of snowfall and the amount of snowfall are gradually increasing, and due to the characteristics of Seoul, which has a lot of traffic, it is difficult to respond quickly with a snow removal method that relies on snow removal vehicles. Therefore, it is necessary to develop an IoT based eco-friendly snow removal system that can respond to unexpected heavy snow in winter. In this study, the low temperature operation and snow removal performance of the IoT road condition snow removal detector and the snow removal system using CNT and PCM are evaluated in the climatic environment chamber. METHODS : To make artificial snow, it consists of an climatic environment chamber that can simulate a low temperature environment and equipment that can supply compressed air and cold water. Depending on the usage characteristics of the climatic environment chamber, use an air-water type snow maker. In order to make artificial snow, wet temperature, which takes into account the actual air temperature and the amount of moisture in the air, acts as the most important variable and is suitable for making snow, below –1.5 ℃. The lower the water temperature, the easier it is to freeze, so the water source was continuously supplied at 0 ℃ to 4 ℃. One of the two different pipes is connected to the water tank to supply water, and the other pipe is connected to the compressor to supply high-pressure air. Water is dispersed by compressed air in the form of many small droplets. The sprayed microscopic water particles freeze quickly in the low temperature environmental climatic chamber air and naturally fall to the floor, forming snow. Based on the KS C IEC 60068-2-1 cold resistance test standard, an integrated environmental test procedure was prepared to apply to IoT-based snow removal systems and performance evaluation was performed accordingly. The IoT based eco-friendly snow removal system is needed to in winter, so visual check and inspect the operation at the climatic chamber before setting up it to the actual site. In addition, grid type equipment was manufactured for consistent and reliable snow removal performance evaluation under controlled environmental conditions. RESULTS : The IoT-based eco-friendly snow removal system normally carried out the task of acquiring data and images without damaging the appearance or freezing in a low temperature environment. It showed clear snow removal performance in areas where PCM and CNT heating technology were applied to the concrete slab. This experiment shows that normal snow removal tasks can be carried out in low temperature environments in winter. CONCLUSIONS : The integrated environmental test procedures and grid type evaluation equipment are applied to low temperature operation and snow removal performance evaluation of snow removal systems. In the climatic environment chamber, where low temperature environments can be simulated, artificial snow is created regardless of the season to derive quantitative experimental results on snow removal performance. PCM and CNT heating technology showed high snow removal performance. The system is expected to be applied to road site situations to preemptively respond to unexpected heavy snow in winter.
PURPOSES : Recently, corrosion and deterioration of highway facilities have been increasing owing to the excessive use of deicers. This study aimed to find an optimal snow removal method to develop countermeasures for the problem of excessive deicer use and improve the efficiency of snow removal. METHODS : Theoretical investigations and experiments related to deicing were conducted to determine the differences between deicing chemical types and states. Based on regional weather patterns, the entire country was categorized into four groups: warm and heavy snow, warm and light snow, cold and heavy snow, and cold and light snow, and matched with each regional office of the Korea Expressway Corporation. RESULTS : Optimal snow removal methods were proposed considering regional characteristics and deicing chemical types and states. CONCLUSIONS : Different deicer types were proposed according to the region type, such as using only salt and salt/calcium chloride in the warm and cold regions, respectively. Second, plowing was more effective at lower temperatures. Third, liquid deicer spraying could reduce the amount of deicer used. A liquid deicer is suitable for preliminary spraying because its quick-acting properties are superior to those of a solid deicer, although its lasting properties are inferior to those of the solid deicer.
PURPOSES : Snow removal is one of the principal components in winter road maintenance. The two commonly used methods are mechanical removal and chemical removal. Mechanical removal pushes accumulated snow off the roadway using snow plows. Chemical removal involves the application of chemicals such as NaCl2 (salt), CaCl2, MgCl2, etc., to liquefy the snow on the road. However, chemicals are known to pose negative effects on the environment and road infrastructure, so it is emphasized that only an appropriate amount of chemicals should be applied. Hence, in this study, extensive field experiments were performed to determine the appropriate amounts of chemicals required for each road surface temperature group.
METHODS : The experiments were carried out at a road weather proving ground, located in Yeoncheon where road weather (including snowfall) can be artificially created. Four surface temperature groups were predetermined, according to the characteristics of de-icing chemicals on snow. For each temperature group, four different amounts of pre-wetted salt were applied to find the optimal rate for each group.
RESULTS : As a consequence, the amount of recommended chemicals for each temperature group was found to be an average of 27.2g/ m2, which is 7.7g/m2 (22%) lower than the corresponding amount presented in the current Korean guidelines.
CONCLUSIONS : Applying the results of this study to snow and ice control tasks enables the minimization of the negative impacts of de-icing chemicals, but still maintaining road safety and mobility.
PURPOSES : This study was conducted to prevent road thinning ice caused by abnormal weather conditions.
METHODS : The appropriate amount of de-icer spread rate was verified by presenting the appropriate amount of snow removal agent spraying criteria for the thickness of the water film, owing to abnormal weather phenomena (fog, frost), and applying the standards to the site. Furthermore, we present a method to utilize residual salt, by quantifying the surface state changes according to the amount of deicer.
RESULTS : Precautionary spread experiments to prevent road thin ice caused by abnormal weather conditions, indicated no freezing from 7.6g/m2 at 2℃-4℃ but 11.1g/m2 was suggested as a step higher considering external environmental variables. The amount of spraying was presented in two sections of rainfall(freezing rain). It is 17.7g/m2 at 0-7℃, 33.3g/m2 at -7~ -15℃, and 44.4g/m2 and 51.1g/m2 at non-urban, respectively.
CONCLUSIONS : The criteria were divided into air temperature and road temperature standards, so that they could be distributed according to the temperature standards that meet the conditions, and the criteria presented were confirmed to be effective in preventing road thinning ice. If the road manager adopts Safety Line, which is suggested by utilizing the amount of residual salt on the road, it is believed that it can help determine the additional deicer.
Deicing agent refers to the substance that melts snow by exothermic or endothermic chemical reaction after spraying on snow. It also has the function of reducing the freezing point to prevent freezing. However, the long-term use of deicing agent can cause some negative problems, such as pot hole, concrete corrosion, vehicle and steel bridge parts corrosion. At present, wet salt spray deicing is a cost-effective deicing method that is being widely used. Typical deicing agents are calcium chloride and sodium chloride. Deicing equipment is placed to similar or higher corrosive environment than coastal or marine environment due to direct contact to chloride in deicing operation. Therefore, the anti-corrosion control is very important for the maintenance of deicing equipment. In this study, corrosion resistance, blistering and repairability of the deicing equipment were tested by using test standard (salt water production and spraying- KS D 9502 , evaluating degree of rusting- ASTM D 610, evaluating degree of blistering- ASTM D 714, pull-off strangth of coatings- ASTM D 4541). And an economical coating system with long-term antirust performance was constructed. The results show that the performance of the coating system has been improved than with the original coating.
PURPOSES: This study evaluates the efficiency of snow removal operation resources using data envelopment analysis (DEA). The results of this study can help decision-making strategies, especially for resource allocation for snow removal works on national highways. METHODS: First, regional road management offices (DMUs) for efficiency evaluation were set up, and a database (for years 2012-2016) for analysis was formed. Second, DEA was carried out by selecting input and output variables based on the constructed database. Lastly, based on the results of the DEA, the efficiency of each regional road management office was evaluated. In addition, the potential for future improvement was determined. RESULTS: The results showed that there was a large variation in efficiency of snow removal operation resources by regional offices. CONCLUSIONS: The results of this study imply that the evaluation of efficiency for snow removal operation resources is important when decisions related to snow-removal strategies are made by road management offices.
PURPOSES : In this study, systematic road snow-removal capabilities were estimated based on previous historical data for road-snowremoval works. The final results can be used to aid decision-making strategies for cost-effective snow-removal works by regional offices.
METHODS: First, road snow-removal historical data from the road snow-removal management system (RSMS), operated by the Ministry of Land, Infrastructure and Transport, were employed to determine specific characteristics of the snow-removal capabilities by region. The actual owned amount and actual used amount of infrastructure were analyzed for the past three years. Second, the regional offices were classified using K-means clustering into groups “close”to one another. Actual used snow-removal infrastructure was determined from the number of snow-removal working days. Finally, the correlation between the de-icing materials used and infrastructure was analyzed. Significant differences were found among the amounts of used infrastructure depending on snowfall intensity for each regional office during the past three years.
RESULTS: The results showed that the amount of snow-removal infrastructure used for low heavy-snowfall intensity did not appear to depend on the amount of heavy snowfall, and therefore, high variation is observed in each area.
CONCLUSIONS: This implies that the final analysis results will be useful when making decisions on snow-removal works.
OBJECTIVES : The objective of this study is to estimate the appropriate storage required for deicing materials in Gangwon-do for successful snow removal operations during the 2018 Pyeongchang Winter Olympic Games. The final estimates of the deicing chemicals can be used by public agencies to aid decision making. METHODS: First, the database that exists in the road snow-removal management system (RSMS) of the Ministry of Land, Infrastructure, and Transport, South Korea was used to determine historical characteristics of snow removal experiences in Gangwon-do. The database includes historical information, including regional and road weather data and number of snow-removal works. Second, both the maximum and the actual amount of storages used for deicing materials in the past three years were analyzed. Lastly, the final estimates of the deicing materials were evaluated using an additional equation. It considers frequency of salt spray application, total administrative road length estimated by road agencies, and number of days required for snow removal works in Gangwon-do. Consequently, the results show that significant differences were not observed between the final estimates and the maximum amount used during the past three years. RESULTS: The final estimates of the deicing materials are almost similar to the maximum amount used during the past three years in Gangwon-do. CONCLUSIONS: The study shows that the estimates of deicing chemicals can be useful when decision making is required for the snowremoval policy.
PURPOSES: This study aims to establish the priority of introducing anti-icing spray system for regions of the National Highways in South Korea. Using this study, a logical plan for instituting such an anti-icing spray system can be established for the National Highways
METHODS : The Analytical Hierarchy Process (AHP) was employed to prioritize the implementation of an anti-icing spray system on Korean highways. For this purpose, an existing scoring table developed by the Ministry of Land, Infrastructure Transport Affair was slightly modified in order to reflect recent trends in winter maintenance. A survey was conducted to gather the preferences regarding the developed hierarchy of road experts and agencies. Finally, the final score was produced by integrating the scoring results with estimated weights for each evaluation criterion.
RESULTS: In general, Honam and the metropolitan areas have relatively high priority while other areas such as Chungcheong, Young Nam, and Gang Won appear to be uniform in importance in terms of establishing an anti-icing spray system. This result may indicate that historical weather data and traffic volumes are significant factors in deciding in winter maintenance polices
CONCLUSIONS : In this study, useful insights are suggested regarding winter maintenance by simultaneously performing rapid snow removal and proactive treatment. Issues of resource allocation may be potential research items in the field transportation engineering.
PURPOSES : This study demonstrates the need for the collection of road weather information in order to perform efficient snow removal works during the winter season. Snow removal operations are usually dependent upon weather information obtained from the Automatic Weather Station provided by the Korea Meteorological Administration. However, there are some difference between road weather and weather forecasts in their scope. This is because general weather forecasts are focused on macroscopic standpoints rather than microscopic perspectives. METHODS : In this study, the relationship between snow removal works and historical weather forecasts are properly analyzed to prove the importance of road weather information. We collected both weather data and snow removal works during winter season at "A" regional offices in Gangwon areas. RESULTS : Results showed that the validation of weather forecasts for snow removal works were depended on the height difference between AWS location and its neighboring roadway. CONCLUSIONS : Namely, it appears that road weather information should be collected where AWS location and its neighboring roadway have relatively big difference in their heights.