검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2018.05 서비스 종료(열람 제한)
        기존 단순소각 및 매립방식의 전통적인 방법으로 처리되던 생활폐기물이 내포하고 있는 가연성 에너지 자원을 보다 효율적으로 재활용하기 위한해 고형연료화 처리하는 시설이 연구단계를 넘어 상용급 시설로 발돋움하고 있으나, 반입되는 생활폐기물 대비 30 ~ 45%의 저품위 잔재물이 발생하며 대부분이 매립을 통해 처리되고 있는 실정이다. 생분해성 유기물질에 의해 발생되는 미생물의 호기성 분해열을 이용하여 폐기물의 함수율을 감소시키는 Bio-drying 기술을 통해 고형연료 생산에서 발생한 잔재물을 고형연료 품질기준 수준으로 끌어올려 고형연료 생산수율을 향상시킴과 동시에 매립되는 비율을 최소화 할 수 있다. Bio-drying 기술을 통해 생산된 저품위 잔재물 기반 고형연료를 활용하여 열에너지를 회수하기 위해 0.1톤/일 Bench급 연소보일러에 적용한 선행연구를 진행하였다. 본 연구에서는 저품위 잔재물을 활용하여 Bio-drying 공정으로 생산한 Bio-drying 고형연료의 연소특성을 파악하기 위해 0.1톤/일 Bench급 연소보일러 테스트 결과를 바탕으로 5톤/일급 연소보일러 시스템을 구축하였다. 수냉 화격자 방식의 5톤/일급 연소보일러 시스템은 연소로, 에너지회수보일러, 열교환기, 건식세정탑, 백필터 구성되어 있다. 5톤/일급 연소보일러 시스템의 성능평가 및 Bio-drying 고형연료의 연소특성을 파악하기 위해 공기비(Equivalent Ratio, ER)에 따른 연소효율을 분석하였으며, 연소가스에 포함된 대기오염물질 분석을 수행하였다. 또한, 연소 후 발생한 바닥재의 강열감량, XRD 및 XRF 분석을 통해 바닥재 발생특성을 파악하였다.
        2.
        2018.05 서비스 종료(열람 제한)
        지난 10년간 신재생에너지 시장은 꾸준히 증가하고 있으며, 이와 더불어 폐기물 에너지화(WtE, Waste to Energy) 기술은 매년 5% 이상 꾸준히 성장할 것으로 예측된다. 폐기물 에너지화 기술은 폐기물 처리방식에 따라 물리적, 열화학적, 생물학적 기술로 분류되며 그중 하나인 폐기물 가스화 기술은 폐기물의 고부가가치 연료화 및 온실가스 감축 증대의 효과로 최근 더욱 각광받고 있다. 공급된 폐기물 내 탄소 및 수소 성분은 가스화 반응을 통해 CO, H2가 주성분인 합성가스로 전환되고 생산된 합성가스는 메탄올, 디젤류, DME 등 다양한 화학원료로 이용될 수 있으며 가스엔진 등 발전분야에 이용이 가능하다. 본 연구에서는 생활폐기물을 기반으로 제조된 비성형 고형연료를 대상으로 8 TPD급 고정층 가스화 반응기에서 합성가스의 생산특성에 대하여 연구하였다. 본 연구의 반응기는 가스화제 주입을 Down-draft 및 Up-draft의 방향으로 공급할 수 있도록 제작하였으며, 이와 더불어 가스화 반응 영역 후단에 Gas Chamber를 두어 추가적인 타르 크랙킹을 유도할 수 있도록 하였다. 기존 공기 가스화의 경우 공기 중의 대부분을 차지하는 비활성 물질인 질소의 공급량이 많아 생산가스 내 합성가스의 비율이 상대적으로 낮아 활용측면에서 발전부분에 국한 되는 한계가 있었다. 이에 반해 본 연구는 공기비(ER, Equivalent Ratio)와 더불어 순산소의 추가 공급으로 산소부화율을 제어하여 발생되는 합성가스의 주성분인 CO, H2의 비율을 30% 이상으로 높게 유지할 수 있었고 이를 통해 생산 가스의 열량 및 냉가스 효율 등 고품질의 합성가스를 생산할 수 있었다.
        3.
        2017.11 서비스 종료(열람 제한)
        우리나와 같이 삼면이 바다인 지역은 연안 해역에서의 대규모 어업활동 및 산업화로 인하여 해상 및 해저의 침적 폐기물, 패각류, 퇴적 오염물 등 해양폐기물 발생량의 증가로 인하여 인류의 정화조라 표현되던 해양은 오염이 날로 심각한 상태에 이르고 있다. 본 연구는 해변에 밀려온 해안폐기물을 대상으로 고형연료 활용 가능성 및 활용 보관, 이동성을 확보하기 위한 펠렛 성형 조건을 분석하였다. 해안폐기물은 그물류, 목재류 등 높은 가연성 물질로 고에너지 고형연료 가능성이 높다. 이를 압축성형을 통한 펠렛 고형연료 생산을 위한 강도별 성형 특성을 분석하였으며, 특히, Polyethylene계 해안폐기물은 펠렛 성형, 형태의 유지 등의 평가를 통해 성형 가능성이 높은 반면 Nylon계 해안폐기물은 성형 형태 유지의 어려움이 있다고 판단된다. 해안폐기물이 고형연료 성형시, Polyethylene는 성형바인더 역할을 수행하여, 압축강도는 350 kg/cm² 이상에서 성형 및 형태 유지가 용이한 조건을 나타냈다. 이렇게 생산된 해안폐기물 고형연료는 높은 Carbon 함량 및 휘발분 함량 등으로 저위발열량은 7,000 kcal/kg이상을 나타냈다.
        4.
        2017.05 서비스 종료(열람 제한)
        지속가능발전을 위한 자원순환형 사회 구축은 1992년 리우협약 이후 국제사회가 추구해야할 목표로 제시되었으며, 2015년 9월에 개최된 유엔총회에서 리우협약의 논의를 이어받아 「지속가능개발목표(SDGs)」를 통해 환경과 개발의 조화를 강조하고 있다. 우리나라에서는 이러한 동향에 대응하여 2016년에 제3차 지속가능발전 기본계획을 수립하여 폐기물 발생억제, 재사용 및 재활용, 에너지화, 환경적으로 안전한 처리를 위한 폐기물 관리시스템을 구축과 같은 온실가스배출량의 저감과 자원순환형 사회 구축을 위한 노력을 기울이고 있다. 또한 2015년 파리 기후변화협약을 통해 2030년까지 국가온실가스 배출량의 37%(BAU 대비)를 감축한다는 목표를 수립하였으며, 온실가스 감축 중심의 정책에서 시장과 기술 중심의 새로운 패러다임으로 전환되고 있다. 폐기물을 이용한 SRF(고형연료, Solid Refuse Fuel)의 생산 및 활용기술은 국제적 동향의 흐름에 대응하기 위한 기술로써 지속가능발전에서 명시하고 있는 자원순환형 사회 구축과 신재생에너지공급 목표의 달성이라는 두 가지의 정책적 흐름을 반영할 수 있는 효율성을 갖고 있다. 우리나라에서는 2020년 1차 에너지 기준 5.0%를 신재생에너지로 충당하는 것을 목표로 상용기술의 개발을 추진하고 있으며 2012년 기준 폐기물의 비중은 전체 신재생에너지 중 68.4%, 2020년에는 49.8%를 차지할 것으로 예측하고 있어 폐기물을 이용한 자원화와 에너지화에 대한 기술개발이 매우 중요해 질 것으로 판단된다. 본 연구에서는 이러한 국내·외 정책의 흐름에 편승하여 폐기물을 이용한 SRF의 제조설비에서 생산되는 상업용 SRF와 생산과정에서 발생되는 부산물을 가공한 SRF를 이용한 모델링을 수행하였다. 연구의 주요 내용은 연소온도별 배기가스의 조성과 가스상 오염물질의 발생량에 대한 CEA code를 이용한 정적모사이며 각각의 시료에 대한 정적모사를 통해 향후 전용보일러와 같은 SRF 활용 기술의 기초데이터를 확보하기 위해 수행되었다.
        5.
        2017.05 서비스 종료(열람 제한)
        국제적 폐기물관리의 패러다임이 변화하면서 자원순환형 기술개발의 수요가 증가하고 있는 추세이다. 이러한 변화에 영향을 받아 국내 정책 또한 저에너지소비형 자원순환 사회 구축을 위한 변화가 요구되고 있다. 1992년 리우지구정상회담 이후 지속가능 발전이 국제사회가 추구해야할 목표로 제시되었으며 2002년 지속가능 발전 정상회담(WSSD) 등을 통해 범지구적인 규제와 협약들이 만들어지고 있다. 최근 2016년 파리에서 열린 기후변화협약에서 기존의 기후체재보다 강제성을 띈 규제의 발현을 위해 노력하고 있다. 우리나라는 신기후변화체재의 대응을 위해 2016년 제1차 기후변화대응 기본계획을 수립하였으며, 저탄소 에너지 정책으로의 전환, 탄소시장 활용을 통한 비용효과적 감축, 기후변화대응 신산업 육성 및 신기술 연구투자 확대와 같은 정책적 흐름을 만들고 있다. 지속가능 발전은 기후변화에 대한 대응과 신재생에너지관련 정책에 있어서 자원순환형 사회 구축과 저에너지소비형 기술개발이라는 동일한 목표를 내포하고 있다. 2020년까지 국내 1차 에너지 중 5.0%를 신재생에너지로 대체할 계획이며 전체 신재생 에너지 중 폐기물의 비중은 약 50%에 해당되는 만큼 매우 중요한 에너지자원으로 인식되고 있다. 본 연구에서는 폐기물의 자원화 방법 중 고형연료 제조기술로 생산된 SRF를 이용하여 공기비와 화상부화율의 변화에 따른 연소특성의 변화에 대해 주목하였다. 연소로의 로내 온도 변화와 연소가스의 조성, 가스상/입자상오염물질의 배출 특성을 비교하여 그 변화를 분석하였다.
        6.
        2017.05 서비스 종료(열람 제한)
        최근 연안 해역에서의 대규모 어업활동과 산업화로 인하여 해상 부유 폐기물 및 해저면의 침적 폐기물, 패각류, 퇴적 오염물 등 해양 폐기물 발생량의 증가로 인하여 해양 오염은 날로 심각한 상태에 이르고 있다. 해양폐기물은 해안으로 밀려오는 해안폐기물, 해수면에 떠다니는 부유폐기물, 바닥에 침적된 침적폐기물, 이렇게 세 종류로 분류할 수 있으며, 이들 해양폐기물은 약 60% 이상은 육상 등 해변에서 발생되어지는 해안폐기물이며 그물류를 포함한 플라스틱이 대부분을 차지하며, 기후 및 지역의 특성에 따라 생활폐기물과 하수, 산업 및 연안의 영향을 받아서 발생하는 폐기물의 특성이 크게 변화한다. 본 연구에서는 섬지역에 발생되는 해안폐기물의 특성을 비교 분석하였으며, 섬의 위치와 계절에 따른 해안폐기물의 발생 특성을 조사하였으며, 발생되어지는 해안페기물의 특성을 분석하여 고형연료 (SRF) 생산 및 활용에 대해 분석하였다. 해안폐기물 발생량은 겨울철 > 여름철 > 가을철 > 봄철 순으로 나타났으며, 그물류가 가장 높은 비율을 차지했으며, 목재류, 비닐플라스틱류, 고무류 등으로 분포하였으며, 이에 따라 발열량은 약 5,200kcal/kg으로 높은 수준이여 높은 질은 나타내고 있다. 지역에서 자연건조된 후 수거한 해안폐기물의 경우는 염소함량이 1.25%로 SRF 기준 2미만으로 나타났다. 단, 대부분의 해안폐기물이 높은 염분을 나타내고 있어 이에 따른 처리 방안은 고려되어야 할 것으로 보인다.
        7.
        2017.05 서비스 종료(열람 제한)
        19세기 이후 급격한 산업발전, 도시화 및 인구 증가로 인한 환경오염, 기후 변화 및 화석연료 고갈 등의 문제로 세계적으로 신재생 에너지에 대한 관심이 꾸준히 증가하고 있다. 특히, 화석연료의 매장량은 석탄 기준 70년 정도가 남아 있으며, 이에 따라 신재생 에너지에 관한 연구가 끊임 없이 진행되고 있다. 다양한 신재생에너지 자원 중 국내에서는 열회수 시설의 폐열 회수 등이 포함되어 폐기물을 이용한 신재생 에너지 보급률이 가장 높은 것으로 알려져 있다. 최근 들어 폐기물의 효율적인 자원화 기술 중 하나인 고형연료(SRF, Solid refues fuel) 기술이 각광받고 있으며, 국내에서 생산되는 SRF의 경우, 가연분 함량이 높아 대체 에너지로서의 가능성이 높게 평가 받고 있다. 특히, 본 연구에서는 경제성을 확보하기 위해 성형 SRF가 아닌 비성형 SRF를 사용하여 연구를 진행하였다. 또한, 열 회수 및 합성가스(H2+CO) 생산을 위해 가스화 공정을 적용해보았으며, 고정층 반응기의 down draft 방식과 유동층 반응기 종류 중 하나인 bubbling fluidized bed 반응기의 특성을 알아보고자 하였다. 이 뿐만 아니라 가스화 공정의 주요 운전 요인 중 하나인 공기 당량비에 따른 합성가스조성, 합성가스의 부피, 고 탄화수소물질인 C2-C6의 함량 그리고 합성가스의 저위발열량을 계산식을 통해 계산하여 최적 조건을 도출하고자 한다.
        8.
        2017.05 서비스 종료(열람 제한)
        최근 들어 화석연료 고갈 및 환경오염 등 다양한 이유로 인해 신재생 에너지 자원에 대한 관심이 증대되고 있으며 관련 연구의 분야도 다양해지고 있다. 국내 신재생 에너지 시장은 점차 증대될 전망이며, 이러한 신재생 에너지는 바이오매스, 폐기물, 태양광, 수력 등 다양한 에너지 자원을 지칭하며 본 연구에서는 폐기물을 이용하여 신재생 에너지 자원 활용을 하고자 한다. 폐기물은 다양한 기술을 통해 활용이 가능하며 국내 폐기물의 경우 종량제 실시 등 법적 제도 덕분에 타 국가에 비하여 재활용률이 높으며 이러한 특성은 폐기물이 신재생 에너지 자원으로 사용되는데 큰 장점으로 나타난다. 최근 들어 주목받고 있는 기술인 Solid Refuse Fuel (SRF) 기술은 파쇄, 선별, 건조 공정을 거쳐 가연분 함량을 높여 열처리 시설에 연료로 사용할 수 있게끔 하는 기술로 이전에는 성형 SRF가 이송 및 투입의 이점에 의해 주목 받았으나 최근 들어 경제적 측면을 고려하여 비성형 SRF가 각광받고 있는 실정이다. 따라서 본 연구에서는 이러한 비성형 SRF를 시료로 하여 8 ton/day 규모의 pilot급 가스화 시스템에 적용하였으며, 가스화 공정 중 발생하는 다양한 가스상 오염 물질에 대한 배출 특성을 파악하고자 하였다. 이 뿐만 아니라 일반적인 가스화 특성 지표로 알려진 냉가스 효율, 탄소 전환율, 합성가스 조성 파악 등에 대하여 결과 값을 정리하였다. 가스상 오염물질은 질소 화합물(HCN, NH3), 염소 화합물(HCl), 황 화합물(H2S)을 선정하여 분석을 진행하였으며, 습식 정제 시스템인 스크러버 및 습식 전기 집진기를 통과한 후 배출 허용기준을 만족하는 것으로 나타났다.
        9.
        2016.11 서비스 종료(열람 제한)
        지속적인 화석 연료의 사용으로 인해 발생하는 환경오염 때문에 대체에너지를 찾는데 많은 연구가 진행되고 있다. 국내에서 발생되는 폐기물은 가연분 함량이 높아 폐기물 고형연료로 생산할 경우 화석원료의 대체제로 사용 가능성이 크다. 이러한 SRF는 최근 주목 받기 시작한 기술로 폐기물을 선별・파쇄 및 건조를 거쳐 생산되며, 국내 SRF의 발열량 기준은 약 3,500kcal/kg 으로 화석연료 및 바이오매스와 비교했을 때 연료로 사용하는데 문제가 없을 정도의 품질기준을 만족시키고 있다. 하지만 SRF의 생산 효율이 60%이하로 낮은 실정에 있어, 연료로 사용가능한 폐기물들이 버려지고 있다. 따라서 본 연구에서는 이를 극복하기 위한 방안으로 SRF를 생산하고 남은 잔재물(저품위 폐기물)을 다시 고형연료로 생산하여 열처리 시설에서 에너지 회수 시설에 적용하기 위한 실험의 하나로 저품위 폐기물의 기초특성분과 본 폐기물의 연소특성에 대해서 평가하였다. 실험결과 비록 MBT(Mechanical Biological Treatment) 처리를 거친 저품위 폐기물을 사용했지만 기존 SRF 연소특성과 비교했을 때 좋은 연소특성을 보였으며, 대기배출허용기준 또한 만족하였다. 본 연구에서는 SRF를 이용하여 에너지화 기술 중 하나인 가스화기술을 적용해 실험을 진행하였다. 실험조건으로는 고정층 반응기에서 공기 산화제를 사용하였으며 반응온도와 시료투입량을 900℃와 1g/min으로 고정하였다. 최적 ER(Equivalent ratio)을 찾기 위하여 0.2,0.4,0.6으로 변화를 주었다. 또한, 가스특성을 평가하기 위하여 Micro-GC를 통해 합성가스의 조성을 파악하였으며, 건조가스수율, 냉가스 효율, 탄소 전환율을 가스화특성 평가 인자로 사용하였다.
        10.
        2015.11 서비스 종료(열람 제한)
        국내 RDF(Refuse Derived Fuel)와 관련한 ‘자원의 절약과 재활용 촉진에 관한 법률이 2013년 1월 개정되면서 국내에서는 RDF가 SRF로 종류가 변경되었으며, 이와 더불어 종전 RPF(Refuse Plastic Fuel), RDF, TDF(Tire Derived Fuel), WCF(Wood Chip Fuel)로 구분되던 것이 SRF와 BIO-SRF로 개정되었으며, 고형연료 제품에서도 성형과 비성형제품으로 구분되게 되었다. 이에 따라 기존 성형SRF제품들에 비해서 비성형 SRF제품의 수분함량의 기준이 15%차이가 나게 되었다. 본 연구에서는 생활폐기물로 생산되는 비성형 SRF의 가스화 반응을 활용하여 고부가 가치의 연료 및 원료를 생산하기 위한 고정층 및 유동층에서의 가스화 특성을 파악하고자 한다. 실험조건은 운전온도 900℃, ER(Equivalent Ratio)조건 0.2, 0.4, 0.6에서의 가스화 반응을 실시하였으며, 고정층반응기에서는 ER비가 증가함에 따라 수소비율이 감소하는 것으로 나타났으나, 유동층반응기에서는 ER 0.4일 때 수소비율이 최저로 나타났다.