Background: Despite its high prevalence, interventions in plantar fasciitis remain inconclusive. To improve the daily life of plantar fasciitis patients, it is necessary to identify appropriate interventions to improve pain and foot pressure and balance. Improving the interventions for plantar fasciitis is one of the main goals for rehabilitation.
Objectives: To investigate the changes in pain and static-dynamic foot pressure and balance through the evaluation of 42 plantar fasciitis patient before and after the foot stretching and joint mobilization interventions.
Design: Randomized controlled trial.
Methods: The 42 subjects of the study were divided into a stretching group and a joint mobilization group with 21 subjects being assigned to each group. The results before and after the experiment were analyzed by applying stretching and joint movement interventions for a total of 6 weeks.
Results: Before and after the intervention, there were significant improvements in the pain index and static-dynamic foot pressure and static balance in both stretching and joint mobilization groups. However, the between-group comparison indicated no significant differences.
Conclusion: The stretching and the joint mobilization can improve the pain and static-dynamic foot pressure and static balance in plantar fasciitis patients.
A pilot-scale pulse-jet bagfilter was designed, built and tested for the effects of four operating conditions (filtration velocity, inlet dust concentration, pulse pressure, and pulse interval time) on the total system pressure drop, using coke dust from a steel mill factory. Two models were used to predict the total pressure drop according to the operating conditions. These model parameters were estimated from the 180 experimental data points. The empirical model (EM) with filtration velocity, areal density, inlet dust concentration, pulse interval time and pulse pressure shows the best correlation coefficient (R=0.971) between experimental data and model predictions. The empirical model was used as it showed higher correlation coefficient (R=0.971) compared to that of the Multivariate linear regression(MLR) (R=0.961). The minimum pulse pressure predicted by empirical model (EM) was 5kg/㎠.
The new empirical static model was constructed on the basis of dimension analysis to predict the pressure drop according to the operating conditions. The empirical static model consists of the initial pressure drop term (N dust = ω0υf / P pulse t) and the dust mass number term (Δp initial), and two parameters (dust deposit resistance and exponent of dust mass number) have been estimated from experimental data. The optimum injection distance was identified in the 64 experimental data at the fixed filtration velocity and pulse pressure. The dust deposit resistance (K d), one of the empirical static model parameters got the minimum value at , d=0.11m, at which the total pressure drop was minimized. The exponent of dust mass number was interpreted as the elasticity of pressure drop to the dust mass number. The elasticity of the unimodal behavior had also a maximum value at , d=0.11m, at which the pressure drop increased most rapidly with the dust mass number. Additionally, the correlation coefficient for the new empirical static model was 0.914.