Three different dogs who had immune-mediated hemolytic anemia (IMHA) were treated for more than two weeks with blood transfusion in an animal clinic. Despite this treatment and hospitalization, there was no clinical improvement in clinical signs as well as complete blood cell count (CBC) including hematocrit (HCT) and C-reactive protein (CRP). All cases were then injected two or three times with allogeneic stem cells through an intravenous route for treatment. Upon administrating stem cells to the IMHA dogs, clinical conditions and the indexes of HCT and CRP were clinically improved within or close to normal ranges.
Currently, there is no treatment to reverse or cure heart failure caused by ischemic heart disease and myocardial infarction despite the remarkable advances in modern medicine. In addition, there is a lack of evidence regarding the existence of stem cells involved in the proliferation and regeneration of cardiomyocytes in adult hearts. As an alternative solution to overcome this problem, protocols for differentiating human pluripotent stem cell (hPSC) into cardiomyocyte have been established, which further led to the development of cell therapy in major leading countries in this field. Recently, clinical studies have confirmed the safety of hPSC-derived cardiac progenitor cells (CPCs). Although several institutions have shown progress in their research on cell therapy using hPSC-derived cardiomyocytes, the functions of cardiomyocytes used for transplantation remain to be those of immature cardiomyocytes, which poses a risk of graft-induced arrhythmias in the early stage of transplantation. Over the last decade, research aimed at achieving maturation of immature cardiomyocytes, showing same characteristics as those of mature cardiomyocytes, has been actively conducted using various approaches at leading research institutes worldwide. However, challenges remain in technological development for effective generation of mature cardiomyocytes with the same properties as those present in the adult hearts. Therefore, in this review, we provide an overview of the technological development status for maturation methods of hPSC-derived cardiomyocytes and present a direction for future development of maturation techniques.
The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed.
One of the most effective and safe therapeutic methods for treating vitiligo, mixed autologous keratinocytes (KCs) and melanocytes (MCs) cultures have been used for autologous cell transplantation. However, the present transplantation method is faced with a problem that may require a large amount of skin tissue and keratinocytes have limited culture potency. We have found previously that human adipose derived stromal cells (hASCs) from aspirated fat tissue could be used in place of KCs and sufficient amounts of hASCs for transplantation could be obtained by small amount of aspirated fat tissue. The present investigation was determined the effect of ASCs on ex vivo expansion MCs for transplantation. In addition, we examined for a preservation conditions of MCs which have reported low recovery rates and a slowdown in growth after cryopreservation. Various conditions including ASCs ratio, incubation period, and additive materials for MCs cultivation was determined to improve the expansion ability of MCs. The growth rate of MCs colony was elevated 6.85 folds compared the previous conditions. These MCs showed a specific expression of immature melanocyte protein, Trp-2, but did not express the mature melanocyte proteins and markers (c-kit, CD133, and etc.) of mesenchymal stem cells that represents in ASCs feeder. Results in cryopreservation experiments were determined a preservation medium for MCs showing an increased recovery rates after thawing. The characteristics of MCs after cryopreservation using a designed medium were indicated consistent morphology and immunophenotype. In conclusion, ASCs as a feeder could be used in place of keratinocytes for ex vivo expansion of MCs. For clinical trial for vitiligo patients, efficiency experiments in preclinical state should be followed.
최근 골수와 혈액으로 유래된 중간엽 줄기세포와 비슷한 능력을 가지는 것으로 알려진 지방 유래 중간엽줄기세포가 새로운 세포 치료제로 떠오르고 있다. 하지만 줄기세포를 이용하여 치료하려는 질병은 나이가 들어감에 따라 발병하는 퇴행성 질환들이 대부분인데, 노화가 진행됨에 따라 줄기세포의 능력이 차이가 있다고 알려져 있다. 이에 본 연구에서는 노화가 일어남에 따라 발생되는 신경성 질환을 자가 유래 지방 중간엽 줄기세포를 이용하여 치료함에 있어서 노화가 진행됨에
최근 제 1형 당뇨병을 치료하기 위하여 인슐린-분비성 세포를 이식하는 세포대체요법이 새로운 치료법으로서 주목받고 있다. 그럼에도 불구하고 췌장세포 이식술은 이식원의 절대적인 부족으로 인해 광범위한 시행이 이루어지지 못하고 있는 실정이다. 무한증식과 전분화능을 보유하는 배아줄기세포는 이식할 -세포의 부족을 해결할 수 있는 잠재적 세포공급원이 될 수 있을 것으로 기대된다. 본 종설에서는 인간배아줄기세포로부터 췌장 -세포로의 유도분화방법에 관한 최근 동향을