1991-2020년의 30년 동안 봄철(3-5월)에 북극-동아시아 지역의 지표면 부근 대기 온난화가 북극 진동에 따라 한국의 서울에서 발생하는 황사 사례일의 종관 기상 특성에 미치는 영향을 분석하였다. 북극-동아시아 지역의 봄철 온 난화 증가는 한국의 서울에서 황사 사례일을 6일을 감소시켰고, 황사 사례일의 PM10 질량 농도도 –1.6 g m3 yr1으로 강도를 약화시키는데 기여하고 있었다. 2010년대 한국에서 감소하고 있는 황사 사례일에 대한 동아시아 지역의 종관 기상 특성은 음()의 잠재소용돌이도(Potential Vorticity Unit; PVU)로 나타나는 고기압성 활동이 증가하고 있었다. 또한, 한국에서는 음()의 북극진동지수(Arctic Oscillation Index; AOI)에서 황사 사례일이 증가하고 양(+)에서는 감소하는 정적 편포를 보였다. AOI가 음()인 황사 사례일에서는 중국 대륙에 온난한 고기압이 강화되고 있었다. 더불어 한대 제트의 중심 위치가 북쪽으로 이동하면서 몽골과 중국 북부에서는 한대 기단의 남하에 의한 저기압성 활동이 약해지고 있었다. 황사의 발생이 감소하였을 뿐 아니라 발원지로부터 한국으로 황사를 수송하는 풍속이 감소하고 있었다. 반면, AOI가 양(+)인 황사 사례일에서는 중국 대륙에 광역적으로 온난하고 정체적인 고기압이 위치하고 있었으며, 한대 제트 의 북쪽이 더욱 냉각되어 있었다. 몽골-중국 북부-한국에 이르는 지역에서 하층 대류권의 현저한 풍속 감소가 황사 발 생을 감소시킬 뿐 아니라 장거리 수송을 약화시키는 원인이 되는 것으로 보인다.
In East Asia, the long-range transport of dust storms originating from Mongolia and northern China affects airborne dust loadings over downwind areas in the southern Korean Peninsula. Since 1997, dust loading cases caused by dust storms have been observed using the thresholds of total suspended particles (TSP, ≥250 μg m−3 hr−1 ) and particulate matter less than 10 μg (PM10, ≥190 μg m−3 hr−1 ) in the central-southern Korean Peninsula. There were two dust loading cases that exceeded these thresholds in 2016 and three in 2017, which reflects the downward trend of the last twenty-one years in the central-southern Korean Peninsula. Furthermore, five other dust loading cases with mass concentrations lower than the thresholds were observed from 2016 to 2017. In the moderate dust loading cases exceeding the thresholds, a descending motion of cut-off lows below 45 o N and a southward trough at 500 hPa gpm isopleths intensified at the western ridge, and largely extended the surface high-pressure system over southeast China. Airborne dust loadings following pronounced north-westerlies in the forward side of the high-pressure system were transported to the surface of the central-southern Korean Peninsula. However, in slight dust loading cases lower than the thresholds, the restricted descending motion of cut-off lows over 45 o N and the southwestward trough at 500 hPa gpm isopleths intensified the zonal flow over the Korean Peninsula. Surface high- and low-pressure systems moved eastward from the source compared to moderate dust loading cases. Due to the zonal movement of dust storms traversing eastern China, slight dust loading cases were observed with relatively higher ratios of PM2.5/TSP and carbon monoxide (CO) in the central-southern Korean Peninsula.
The objective of this study is to provide with the hydro-meteological and probabilistic characteristics of the storms of typhoons that have been passed through the Korean peninsula during the last twenty-three years since 1961. The paths and intensities of the typhoons were analyzed. Fifty weather stations were selected and the rainfall data during typhoon periods were collected. Rainfall data were analyzed for the patterns and probabilistic distributions. The results were presented to describe the areal distributions of probabilistic characteristics. The results obtained from this study can be summarized as follows: 1. The most frequent typhoon path that has passed through the Korean peninsula was type E, followed by types CWE, W, WE, and S. The most frequent typhoon intensity was type B, followed by A, super A, and e types, respectively. 2. The third quartile typhoon rainfall patterns appear most frequently followed by the second, first, and last quartiles, respectively, in Seoul, Pusan, Taegu, Kwangju and Taejon. The single typhoon rainfalls with long rainfall durations tended to show delayed type rainfall patterns predominantly compared to the single rainfalls with short rainfall durations. 3. The most frequent probabilistic distribution of typhoon rainfall event is Pearson type-III, followed by Two-parameter lognormal distribution, and Type-I extremal distribution. 4. The most frequent probability distribution model of seashore location was Pearson type-III distribution. The most frequent probability distribution model of inland location was two parameter lognormal distribution.
Coronal Mass Ejections (CME), which originate from active regions of the Sun’s surface, e.g., sunspots, result in geomagnetic storms on Earth. The variation of the Earth’s geomagnetic field during such storms induces surface currents that could cause breakdowns in electricity power grids. Hence, it is essential to both monitor Geomagnetically Induced Currents (GICs) in real time and analyze previous GIC data. In 2012, in order to monitor the variation of GICs, the Korean Space Weather Center (KSWC) installed an induced current measurement system at SINGAPYEONG Substation, which is equipped with 765 kV extra-high-voltage transformers. Furthermore, in 2014, two induced current measurement systems were installed on the 345 kV high-voltage transformers at the MIGEUM and SINPOCHEON substations. This paper reports the installation process of the induced current measurement systems at these three substations. Furthermore, it presents the results of both an analysis performed using GIC data measured at the SINGAPYEONG Substation during periods of geomagnetic storms from July 2013 through April 2015 and the comparison between the obtained GIC data and magnetic field variation (dH/dt) data measured at the Icheon geomagnetic observatory.
Using the Total Electron Content (TEC) data from the Global Navigation Service System (GNSS) site in Jeju, operated by the Korea Astronomy and Space Science Institute (geographic location: 33.3° N, 126.5° E; geomagnetic location: 23.6° N) for 2002– 2014 in Korea, the results of the statistical analysis of positive and negative ionospheric storms are presented for the first time. In this paper, ionospheric storms are defined as turbulences that exceed 50% of the percentage differential Global Positioning System (GPS) TEC ratio (ΔTEC) with monthly median GPS TEC. During the period of observations, the total number of positive ionospheric storms (ΔTEC > 50%) was 170, which is greater than five times the number of negative ionospheric storms (ΔTEC < - 50%) of 33. The numbers of ionospheric storms recorded during solar cycles 23 and 24 were 134 and 69, respectively. Both positive and negative ionospheric storms showed yearly variation with solar activity during solar cycle 23, but during solar cycle 24, the occurrence of negative ionospheric storms did not show any particular trend with solar activity. This result indicates that the ionosphere is actively perturbed during solar cycle 23, whereas it is relatively quiet during solar cycle 24. The monthly variations of the ionospheric storms were not very clear although there seems to be stronger occurrence during solstice than during equinox. We also investigated the variations of GPS positioning accuracy caused by ionospheric storms during November 7–10, 2004. During this storm period, the GPS positioning accuracies from a single frequency receiver are 3.26 m and 2.97 m on November 8 and 10, respectively, which is much worse than the quiet conditions on November 7 and 9 with the accuracy of 1.54 m and 1.69 m, respectively.
In this study, we documented the midlatitude F2-layer response to five strong geomagnetic storms with minimum Dst < –150 nT that occurred in solar minimum years using hourly values of the F2-layer critical frequency (foF2) from four ionosondes located in different hemispheres. The results were very limited, but they illustrated some peculiarities in the behavior of the F2-layer storm. During equinox, the characteristic ionospheric disturbance patterns over the Japanese station Wakkanai in the Northern Hemisphere and the Australian station Mundaring in the Southern Hemisphere were consistent with the well-known scenario by Prölss (1993); however, during a December solstice magnetic storm, both stations did not observe any noticeable positive ionospheric disturbances. Over the “near-pole” European ionosonde, clear positive ionospheric storms were not observed during the events, but the “far-from-pole” Southern Hemisphere station Port Stanley showed prominent enhancements in F2-layer peak electron density in all magnetic storms except one. No event produced noticeable nighttime enhancements in foF2 over all four ionosondes.
To identify seasonal and latitudinal variations of F2 layer during magnetic storm, we examine the change of daily averages of foF2 observed at Kokubunji and Hobart during high (2000~2002) and low (2006~2008) solar activity intervals. It is found that geomagnetic activity has a different effect on the ionospheric F2-layer electron density variation for different seasons and different latitudes. We, thus, investigate how the change of geomagnetic activity affects the ionospheric F2-layer electron density with season and latitude. For this purpose, two magnetic storms occurred in equinox (31 March 2001) and solstice (20 November 2003) seasons are selected. Then we investigate foF2, which are observed at Kokubunji, Townsville, Brisbane, Canberra and Hobart, Dst index, Ap index, and AE index for the two magnetic storm periods. These observatories have similar geomagnetic longitude, but have different latitude. Furthermore, we investigate the relation between the foF2 and the [O]/[N2] ratio and TEC variations during 19-22 November 2003 magnetic storm period. As a result, we find that the latitudinal variations of [O]/[N2] ratio and TEC are closely related with the latitudinal variation of foF2. Therefore, we conclude that the seasonal and latitudinal variations of foF2 during magnetic storm are caused by the seasonal and latitudinal variations of mean meridional circulation of the thermosphere, particularly upwelling and downwelling of neutral atmosphere during magnetic storm.
설계홍수량산정과 관련하여 국내 실무에서 어려움을 겪는 가장 큰 문제 중 하나는 설계강우의 결정이다. 설계강우와 관련된 문제는 보다 세부적으로 살펴보면 강우의 시간분포와 강우의 공간분포 결정 문제로 집약될 수 있다. 본 연구에서는 강우의 시간분포와 공간분포에 관련된 문제를 해결할 수 있는 방법으로 티센가중치를 반영한 교호블록형 이동강우(TWBK moving storms)에 의한 설계홍수량 산정기법을 제안하고 그 적용성을 검토하였다. 100년 빈도 48시간