AZO/Cu/AZO thin films were deposited on glass by RF magnetron sputtering. The specimens showed the preferred orientation of (0002) AZO and (111) Cu. The Cu crystal sizes increased from about 3.7 nm to about 8.5 nm with increasing Cu thickness, and from about 6.3 nm to about 9.5 nm with increasing heat treatment temperatures. The sizes of AZO crystals were almost independent of the Cu thickness, and increased slightly with heat treatment temperature. The residual stress of AZO after heat treatment also increased compressively from -4.6 GPa to -5.6 GPa with increasing heat treatment temperature. The increase in crystal size resulted from grain growth, and the increase in stress resulted from the decrease in defects that accompanied grain growth, and the thermal stress during cooling from heat treatment temperature to room temperature. From the PL spectra, the decrease in defects during heat treatment resulted in the increased intensity. The electrical resistivities of the 4 nm Cu film were 5.9 × 10-4 Ω ‧ cm and about 1.0 × 10-4 Ω ‧ cm for thicker Cu films. The resistivity decreased as the temperature of heat treatment increased. As the Cu thickness increased, an increase in carrier concentration resulted, as the fraction of AZO/Cu/AZO metal film increased. And the increase in carrier concentration with increasing heat treatment temperature might result from the diffusion of Cu ions into AZO. Transmittance decreased with increasing Cu thicknesses, and reached a maximum near the 500 nm wavelength after being heat treated at 200 °C.
In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.
The costs of large computing facilities like data centers were dominated by the costs of the information technology (IT) equipment that they have in 1990s. As the indirect cost of IT has increased, Total Cost of Ownership(TCO) analysis is required to find the lifetime costs of acquiring, operating, and changing IT equipment. Nowadays, electricity-related costs such as the electrical power used by IT equipment and the facility costs associated with powering and cooling IT equipment has sharply grown. Nonetheless, those electricity-related costs have been underestimated up to now. In this paper, we will develop TCO model for a high performance computing data center and perform TCO analysis. We will also show that the trend towards growing electricity-related IT equipment costs continue, direct IT equipment acquisition costs will not be an critical factor of the economics of computing services.
Various thicknesses of Al-doped ZnO (AZO) films were deposited on glass substrate using pulsed dcmagnetron sputtering with a cylindrical target designed for large-area high-speed deposition. The structural,electrical, and optical properties of the films of various thicknesses were characterized. All deposited AZO filmshave (0002) preferred orientation with the c-axis perpendicular to the substrate. Crystal quality and surfacemorphology of the films changed according to the film thickness. The samples with higher surface roughnessexhibited lower Hall mobility. Analysis of the measured data of the optical band gap and the carrierconcentration revealed that there were no changes for all the film thicknesses. The optical transmittances weremore than 85% regardless of film thickness within the visible wavelength region. The lowest resistivity,4.13×10-4Ω·cm-1, was found in 750nm films with an electron mobility (µ) of 10.6cm2V-1s-1 and a carrierconcentration (n) of 1.42×1021cm-3.