Hot section components of gas turbines are exposed to a high operating temperature environment. To protect these components, thermal barrier coatings (TBC) are applied to their surfaces. Yttria-stabilized zirconia (YSZ), which is widely used as a TBC material, faces limitations at temperatures above 1200 °C. To mitigate these issues, research has focused on adding lanthanide rare earth oxides and tetravalent oxides to prevent the phase-transformation of the monoclinic phase in zirconia. This study investigated the effects of varying TiO2 content in Nd2O3 and Yb2O3 co-doped YSZ composites. Increasing TiO2 content effectively suppressed formation of the monoclinic phase and increased the thermal degradation resistance compared to YSZ in environments over 1200 °C. These findings will aid in developing more thermally stable and efficient TBC materials for application in high-temperature environments.
This study focused on improving the phase stability and mechanical properties of yttria-stabilized zirconia (YSZ), commonly utilized in gas turbine engine thermal barrier coatings, by incorporating Gd2O3, Er2O3, and TiO2. The addition of 3-valent rare earth elements to YSZ can reduce thermal conductivity and enhance phase stability while adding the 4-valent element TiO2 can improve phase stability and mechanical properties. Sintered specimens were prepared with hot-press equipment. Phase analysis was conducted with X-ray diffraction (XRD), and mechanical properties were assessed with Vickers hardness equipment. The research results revealed that, except for Z10YGE10T, most compositions predominantly exhibited the t-phase. Increasing the content of 3-valent rare earth oxides resulted in a decrease in the monoclinic phase and an increase in the tetragonal phase. In addition, the t(400) angle decreased while the t(004) angle increased. The addition of 10 mol% of 3-valent rare-earth oxides discarded the t-phase and led to the complete development of the c-phase. Adding 10 mol% TiO2 increased hardness than YSZ.
Fire fighting robots to cope with fire are used to support fire fighting activities of firefighters. In the field of fire, the thermal performance test of the fire fighting robot is indispensable as the radiation intensity is high. For this purpose, a thermal barrier material which can be used for heat shielding was selected. Also, the results of the thermal barrier study, which can improve the heat shielding for the fire fighting robots, are presented by evaluating the characteristics of the heat shields of the material. By coating the Ag film on the surface of the robot, heat transmitted to the inside can be shielded, and the thermal barrier effect due to the difference in the thickness of the Ag coating can be seen. It can be seen that a secondary thermal barrier system using an Ag coated insulating box and a heat insulating board capable of protecting the electronic devices of the fire fighting robot at high temperatures and protecting the electronic devices for smooth functioning is efficient. This study is introduced a thermal barrier structure and system that can be used for fire fighting robots.
The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and 500 μm, and those of the bond coat were 100 and 250 μm. FTF tests were performed until 1140 cycles at a surface temperature of 1100 oC for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and 500 μm were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.
4 mol% Yttria-stabilized zirconia (4YSZ) coatings with 200 μm thick are fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) for thermal barrier coating (TBC). 150 μm of NiCrAlY based bond coat is prepared by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. 4 mol% YSZ top coating shows typical tetragonal phase and columnar structure due to vapor phase deposition process. The adhesion strength of coating is measured about 40 MPa. There is no delamination or cracking of coatings after thermal cyclic fatigue and shock test at 850oC.