검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2015.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Titanium has many special characteristics such as specific high strength, low elastic modulus, excellent corrosion and oxidation resistance, etc. Beta titanium alloys, because of their good formability and strength, are used for jet engines, and as turbine blades in the automobile and aerospace industries. Low cost beta titanium alloys were developed to take economic advantage of the use of low-cost beta stabilizers such as Mo, Fe, and Cr. Generally, adding a trace of boron leads to grain refinement in casted titanium alloys due to the pinning effect of the TiB phases. This study analyzed and evaluated the microstructural and mechanical properties after plastic deformation and heat treatment in boron-modified Ti-2Al-9.2Mo-2Fe alloy. The results indicate that a trace of boron addition made grains finer; this refinement effect was found to be maintained after subsequent processes such as hot forging and solution treatment. This can effectively reduce the number of required manufacturing process steps and lead to savings in the overall cost as well as low-cost beta elements.
        4,000원
        2.
        2015.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural analysis of a (α+β) Ti alloy was investigated to consider phase transformation in each step of thethermo-mechanical process using by SEM and TEM EDS. The TAF (Ti-6Al-4Fe) alloy was thermo-mechanically treated withsolid solution at 880oC, rolling at 880oC and annealing at 800oC. In the STQ state, the TAF microstructure was composedof a normal hcp α and metastable β phase. In a rolled state, it was composed of fine B2 precipitates in an α phase, whichhad high Fe segregation and a coherent relationship with the β matrix. Finally, in the annealing state, the fine B2 precipitateshad disappeared in the α phase and had gone to the boundary of the α and β phase. On the other hand, in a lower rollingtemperature of 704oC, the B2 precipitates were more coarse in both the α and the boundary of α and β phase. We concludedthat microstructural change affects the mechanical properties of formability including rolling defects and cracks.
        4,000원
        3.
        2011.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at 700˚C and 800˚C for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At 700˚C, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at 800˚C, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of Al2O3, a diffusion resistance layer, is remarkably hindered by a relative decrease of the α volume fraction. This is because Fe addition increases the volume fraction of β phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.
        4,000원
        4.
        2006.04 구독 인증기관·개인회원 무료
        The low-cycle fatigue performance and fracture of the P/M Ti-Fe-Mo-Al-Nd Alloys after sintering and forging have been studied. The linear regression equation of low-cycle fatigue lifetime has been obtained; the fatigue performances are objected under two different conditions. The fatigue fracture surface is analyzed by SEM. The low-cycle fatigue behavior of the P/M titanium alloy has been discussed.