검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES:Emulsified asphalt is critical for road construction. The objective of applying asphalt emulsion as an adhesive is to prevent the phenomenon of debonding between the upper and lower layers. The quantity and veriety of bituminous material can be varied according to the type of pavement and site conditions. The objective of this study is to reveal the optimum application rates of the emulsified asphalt materials by types of tack-coats using Interface Shear Strength(ISS).METHODS:In the research, emulsified asphalt was paved on the surface of the divided mixture. The specimens of paving asphalt emulsion were utilized to evaluate the bond strength of tack-coat materials. In the evaluation process, NCHRP Report 712 was utilized to investigate the Interface Shear Strength, which reflects the bond capacity of asphalt emulsion. Then, the optimum residual application rates by tack-coat types were determined using regression analysis.RESULTS:As a consequence of squared R values investigated from 0.7 to 1 as part of the regression analysis, the tendency of predicted ISS values was compared with the results. The optimum residual application rates of AP-3, RS(C)-4, QRS-4, and BD-Coat were determined to be 0.78ℓ/m2, 0.51ℓ/m2, 0.53ℓ/m2, and 0.73ℓ/m2, respectively, utilizing 4th regression analysis.CONCLUSIONS:Based on the result of this study, it was not feasible to conclude whether higher residual application of tack-coat material leads to improved bond capacity. Rather, the shearing strength varies depending on the type of pavement.
        4,000원
        2.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, uniaxial compression tests were performed to investigates the stress-strain relations of Double Skinned Composite Tubular Columns reinforced with steel tube. The confined concrete has been known as the strength of concrete increases significantly. Specimens reinforced with outer and inner steel tube were tested by uniaxial compression test. To investigate the influence of concrete strength increase by confining conditions in steel tubes, 8 specimens with different thickness of tube, hollowness ratio and concrete strength were tested and compared with other researcher's concrete material model.
        4,000원
        3.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is aimed to examine the influence of the rotational stiffness of U-shaped ribs on the local buckling behaviors of laminated composite plates. Applying the orthotropic plates with eight layers of the layup [(0°)4]s and [(0°/90°)2]s, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. There is a need to develope a simple design equation to establish the rotational stiffness effect, which could be easily quantified by comparing the theoretical critical stress equation for laminated composite plates with elastic restraints based on the Classical laminated plate theory. Through the parametric numerical studies, it is confirmed that there should clearly exist an increasing effect of local plate buckling strength due to the rotational stiffness by closed-section ribs. An applicable coefficient for practical design should be verified and proposed for future study. This study will contribute to the future study for establishing an increasing coefficient for the design strength and optimum design of U-rib stiffened plates.
        4,000원
        4.
        2013.04 구독 인증기관 무료, 개인회원 유료
        This study investigates the stress-strain relations of internally confined hollow concrete filled tube pier reinforced with GFRP tube by uniaxial compression test. The confined concrete subjected multi-axial stresses have been known as the strength of concrete increases significantly. Many researchers have studied in confining effects of CFT which have only outer GFRP tube. In this study, specimens reinforced with outer and inner GFRP tube were tested by uniaxial compression test. To investigate the influence of concrete strength increase by confining conditions in GFRP tube, 13 specimens with different thickness of tube, hollowness ratio and nominal concrete strength were tested and compared with Steel tube.
        3,000원
        5.
        2013.04 구독 인증기관 무료, 개인회원 유료
        This study is aimed to examine the influence of the rotational stiffness of U-shaped ribs on the local buckling behaviors of laminated composite plates. Applying the orthotropic plates with eight layers of the layup [(0°)4]s and [(0°/90°)2]s, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. There is a need to develope a simple design equation to establish the rotational stiffness effect, which could be easily quantified by comparing the theoretical critical stress equation for laminated composite plates with elastic restraints based on the Classical laminated plate theory. This study will contribute to the future study for evaluating the design strength and optimum design of U-rib stiffened plates.
        3,000원
        6.
        2013.10 서비스 종료(열람 제한)
        This study is aimed to examine the minimum required thickness of U-shaped ribs for the laminated composite plates under in-plane uniaxial compression. 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. The minimum required thickness was compared by applying the orthotropic plates with the eight layer composite layups of [(0°)4]s, [(0°/90°)2]s and [(-45°/45°)2]s. There is a need to develope a simple design method to determine the minimum required thickness of U-shaped ribs, which should require more much parametric analysis results than a series of data shown in this study. This study will contribute to the future study for establishing the optimum design method of U-rib stiffened plates.
        7.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        CFS로 둘러싸서 외부에서 구속하는 방법은 정적 혹은 지진하중을 받는 철근콘크리트 기둥을 보강하는데 매우 효과적이다. 이러한 CFS 보강법의 신뢰성 있고 경제적인 설계를 위해서는 정확한 CFS 구속콘크리트의 응력-변형률 관계를 파악하는 것이 필요하게 된다. 본 연구에서는 원형단면을 갖는 단주 RC 기둥에 대해서 일축압축 실험을 실시하였다. CFS 면적비, 나선철근 면적비, 그리고 콘크리트 압축강도가 CFS로 구속된 콘크리트의 응력-변형률관계에 대한 영향을 평가하기 위한 실험변수로서 고려되었다. 기둥을 CFS로 횡보강함으로서 콘크리트의 강도 및 연성이 크게 증가되었다. 또한, 나선철근이 배근된 실험체의 강도증가율은 CFS만으로 횡보강된 실험체보다 횡보강성능이 크고 작게 나타났다.