해양오염사고가 발생하면 해양경찰청에서는 긴급방제에 관한 전략 수립을 위해 유출유 확산 예측모델을 구동한다. 이러한 유출유 확산예측모델은 바람, 해류, 조류 등 해양기상을 기반으로 해상에서 유출유 이동방향과 소멸시간 등을 예측하며, 그 결과를 기 반으로 해양경찰청에서는 방제전략을 수립하고 필요한 방제자원을 동원한다. 이뿐만 아니라 유출유 확산예측모델은 해양경찰청의 해 양환경에 관한 다양한 법률 분야와 연계된 형사법 작용의 기술적 근거를 제공한다. 우선 행정법적 측면에서 해양경찰청이 방제의무자 에게 이행하도록 하는 권력적 행정행위로서의 방제명령 등에 대한 비례성 원칙에 부합하는지를 확인할 수 있고, 이는 행정의무 미이행 에 대한 형사법 작용의 전제 요건이 될 수 있다. 그리고 국제법적 측면에서 관할해역 이원에서 발생한 오염에 대해 국가의 개입여부를 판단할 수 있는 근거를 제공하고, 이는 형사관할권에 대한 판단에 있어 기술적 자료가 될 수 있다. 더불어 형사법적 측면에서는 예측 모델은 해양오염과 유출원 사이의 인과관계를 증명하는 방법으로 활용할 수도 있다. 그리고 기후위기로 친환경선박이 도입되고, 이에 따라 해양오염사고는 인명과 환경에 함께 피해를 주는 복합사고 형태로 변화할 것이다. 이에 따라서 기술적 측면에서 기존 해상에서의 유출유 예측모델은 대기ㆍ해양ㆍ수중에 대한 통합모델로 전환되어야 한다. 그리고 제도적 측면에서 친환경선박의 위험 연료에 대한 관리의무 규정을 마련하여야 하고, 의무이행을 위한 형사정책적 측면에서는 위험연료 유출로 해양환경 위해가 있는 경우에 형사벌 대 상이 될 수 있다. 여기서 통합모델은 환경ㆍ안전이 관한 보호법익 침해를 증명하는 과학적 증거로 활용할 수 있다.
Maritime monitoring requirements have been beyond human operators capabilities due to the broadness of the coverage area and the variety of monitoring activities, e.g. illegal migration, or security threats by foreign warships. Abnormal vessel movement can be defined as an unreasonable movement deviation from the usual trajectory, speed, or other traffic parameters. Detection of the abnormal vessel movement requires the operators not only to pay short-term attention but also to have long-term trajectory trace ability. Recent advances in deep learning have shown the potential of deep learning techniques to discover hidden and more complex relations that often lie in low dimensional latent spaces. In this paper, we propose a deep autoencoder-based clustering model for automatic detection of vessel movement anomaly to assist monitoring operators to take actions on the vessel for more investigation. We first generate gridded trajectory images by mapping the raw vessel trajectories into two dimensional matrix. Based on the gridded image input, we test the proposed model along with the other deep autoencoder-based models for the abnormal trajectory data generated through rotation and speed variation from normal trajectories. We show that the proposed model improves detection accuracy for the generated abnormal trajectories compared to the other models.
The fishery compensation by marine spatial planning such as routeing of ships and offshore wind farms is required objective data on whether fishing vessels are engaged in a target area. There has still been no research that calculated the number of fishing operation days scientifically. This study proposes a novel method for calculating the number of fishing operation days using the fishing trajectory data when investigating fishery compensation in marine spatial planning areas. It was calculated by multiplying the average reporting interval of trajectory data, the number of collected data, the status weighting factor, and the weighting factor for fishery compensation according to the location of each fishing vessel. In particular, the number of fishing operation days for the compensation of driftnet fishery was considered the daily average number of large vessels from the port and the fishery loss hours for avoiding collisions with them. The target area for applying the proposed method is the routeing area of ships of Jeju outer port. The yearly average fishing operation days were calculated from three years of data from 2017 to 2019. As a result of the study, the yearly average fishing operation days for the compensation of each fishing village fraternity varied from 0.0 to 39.0 days. The proposed method can be used for fishery compensation as an objective indicator in various marine spatial planning areas.
Maritime monitoring requirements have been beyond human operators capabilities due to the broadness of the coverage area and the variety of monitoring activities, e.g. illegal migration, or security threats by foreign warships. Abnormal vessel movement can be defined as an unreasonable movement deviation from the usual trajectory, speed, or other traffic parameters. Detection of the abnormal vessel movement requires the operators not only to pay short-term attention but also to have long-term trajectory trace ability. Recent advances in deep learning have shown the potential of deep learning techniques to discover hidden and more complex relations that often lie in low dimensional latent spaces. In this paper, we propose a deep autoencoder-based clustering model for automatic detection of vessel movement anomaly to assist monitoring operators to take actions on the vessel for more investigation.
최근 해상교통 환경의 변화가 다양해지고, 해상 교통량이 지속적으로 증가함에 따라 해상교통 분석에 대한 요구가 다양해지고 있다. 이러한 해상교통 분석 작업은 교통 특성에 대한 모델링이 선행되어야 하지만, 기존의 방법은 자동화되어 있지 않아 전처리 작업에 시간이 많이 소요되고, 분석 결과에 작업자의 주관적인 견해가 포함될 수 있는 문제점이 있었다. 이러한 문제점을 해결하고자 본 논문에서는 해상교통 분석을 위한 자동화된 교통 네트워크 생성 방법을 제안하였으며, 활용 가능성을 검토하기 위해 실제 목포항에서 수집된 6개월간의 항적 데이터를 이용한 실험을 수행하였다. 실험 결과, 대상 해역의 교통 특성을 반영한 교통 네트워크를 자동으로 생성할 수 있었으며, 대용량의 항적 데이터에도 적용할 수 있음을 확인하였다. 또한, 생성된 교통 네트워크는 시공간적 특징 분석이 가능하여 다양한 해상교통 분석에 활용될 수 있을 것으로 기대한다.