검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of different spray angles (90°, 85°, 80°) on the microstructure and mechanical properties of a Y2O3 coating layer prepared using the atmospheric plasma spray (APS) process were studied. The powders employed in this study had a spherical shape and included a cubic Y2O3 phase. The APS coating layer exhibited the same phase as the powders. Thickness values of the coating layers were 90°: 203.7 ± 8.5 μm, 85°: 196.4 ± 9.6 μm, and 80°: 208.8 ± 10.2 μm, and it was confirmed that the effect of the spray angle on the thickness was insignificant. The porosities were measured as 90°: 3.9 ± 0.85%, 85°: 11.4 ± 2.3%, and 80°: 12.7 ± 0.5%, and the surface roughness values were 90°: 5.9 ± 0.3 μm, 85°: 8.5 ± 1.1 μm, and 80°: 8.5 ± 0.4 μm. As the spray angle decreased, the porosity increased, but the surface roughness did not show a significant difference. Vickers hardness measurements revealed values of 90°: 369.2 ± 22.3, 85°: 315.8 ± 31.4, and 80°: 267.1 ± 45.1 HV. It was found that under the condition of a 90° angle with the lowest porosity exhibited the best hardness value. Based on the aforementioned results, an improved method for the APS Y2O3 coating layer was also discussed.
        4,000원
        2.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study is aimed at preparing and evaluating the plasma resistance of YAS (Y2O3-Al2O3-SiO2) coating layer with crystalline YAG phase contents. For this purpose, YAS frits with controlled phase contents are prepared and melt-coated on sintered Al2O3 ceramics. Then, the results of phase analysis of crystalline YAS coating layer are compared to that of YAS frits, and discussed with regard to the plasma resistance of the YAS coating layer. The phase contents of the YAS frit change in a manner different from that of the prepared YAS coating layer, presumably owing to the composition change of YAS frit during the melt-coating process. The plasma resistance of the YAS coating layer is shown to increase with the YAG phase contents in the coating layer. Comparing the weight loss of YAS coating layer with those of commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the prepared YAS coating layer is 8 times higher than that of quartz and 3 times higher than that of Al2O3; this layer shows 70 % of the resistance of Y2O3.
        4,000원
        3.
        2020.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study is aimed at improving the plasma resistance of Al2O3 ceramics on which plasma resistant YAS(Y2O3- Al2O3-SiO2) frit is melt-coated using a simple heat-treatment process. For this purpose, the results of phase analysis and microstructural observations of the prepared YAS frits and the coating layers on the Al2O3 ceramics according to the batch compositions are compared and discussed with regard to the results of plasma resistance test. The prepared YAS frits consist of crystalline or amorphous or co-existing crystalline and amorphous phases according to the batch compositions, depending on the role and content of each raw material. The prepared YAS frit is melt-coated on the densely sintered Al2O3 ceramics, resulting in a dense coating layer with a thickness of at least ~ 80 m. The YAS coating layer consists of crystalline YAG(Y3Al5O12), Y2Si2O7, and Al2O3 phases, and YAS glass phase. Plasma resistance of YAS coated Al2O3 ceramics is strongly dependent on the content of the YAG(Y3Al5O12) and Y2Si2O7 crystalline phases in the coating layer, especially on the content of the YAG phase. Comparing the weight loss of YAS coating ceramics with values obtained for commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the YAS coating ceramics is 6 times higher than that of quartz, 2 times higher than that of Al2O3, and 50 % of the resistance of Y2O3.
        4,000원
        4.
        2016.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the degree of particle melting in Y2O3 plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed Y2O3 coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the Y2O3 coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.
        4,000원
        5.
        2014.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thermal barrier coatings(TBCs) are being applied in many industrial fields such as thermal power generation, aviation and seasonal fields. ZrO2-Y2O3(8%) thermal spray coating powders are commercially used as thermal-barrier coating materials to protect against oxidation and corrosion of heat-resistant alloys at elevated temperatures. Currently, ZrO2-Y2O3(8%) thermal-spray powder is made using the industrial co-precipitation process, which is very complex and requires a lot of time. In this study, orthorhombic ZrO2 and Y2O3 powders were fabricated by mechanical mixing, which is more economical than the co-precipitation process. A tetragonal, yttria-stabilized zirconia(YSZ) coating-layer was produced by plasma spraying, using orthorhombic ZrO2-Y2O3(8%) powder. Our experimental results indicate that ZrO2-Y2O3(8%) mixed powder can be used economically in industry because it is no longer necessary to make this powder by liquid and gas-phase methods.
        4,000원
        6.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Yttria-stabilized zirconia (YSZ) coatings are fabricated via suspension plasma spray (SPS) for thermal barrier applications. Three different suspension sets are prepared by using a planetary mill as well as ball mill in order to examine the effect of starting suspension on the phase evolution and the microstructure of SPS prepared coatings. In the case of planetary-milled commercial YSZ powder, a deposited thick coating turns out to have a dense, vertically-cracked microstructure. In addition, a dense YSZ coating with fully developed phase can be obtained via suspension plasma spray with suspension from planetary-milled mixture of Y2O3 and ZrO2.
        4,000원
        7.
        2010.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        산화물 사용 후 핵연료를 처리하는 전해환원공정에서는 LiCl 용융염계에서 산소가 생성되는 반응을 수반하게 되 며, 생성된 산소로 인해 반응기의 구조재료를 상당히 부식시킬 수 있는, 화학적으로 심각한 반응환경을 조성한다. 따라서, 고온 용융염을 다루는 전해환원 공정장치를 위해서는 최적의 재료를 선택하는 것이 필수적이다. 본 연구에 서는 리튬용융염, 675℃, 216시간동안 산화분위기에서 코팅이 안 된 초합금과 코팅된 초합금 시편의 고온 부식연구 를 수행하였다. IN713LC 초합금 시편에 aluminized NiCrAlY bond 코팅 후 Y2O3 top 코팅을 하였다. 코팅이 안 된 초 합금은 부식층의 빠른 성장응력과 열적응력에 의한 부식층의 박리로 명확한 무게손실을 보인다. 탑 코팅의 화학적 및 열적 안정성으로 인해 고온 리튬용융염을 다루는 구조재료의 부식 저항성이 증가함을 확인할 수 있었다
        4,000원