검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.11 구독 인증기관·개인회원 무료
        Ring Tensile Test (RTT) is mainly performed for comparing tensile strength and total strain between nuclear fuel cladding specimens under various initial conditions. Through RTT, the loaddisplacement (F-D) curve obtained from the uniaxial tensile test can also be obtained. However, the Young’s modulus estimated from the gradient of the straight portion is much lower than general value of materials. The reasons include tensile machine compliance, slack in the fixtures, or elastic deformation of the fixtures and the tooling. Another reason is that the bending of the test part in the ring is stretched with two pieces of tools. Although the absolute value of the Young’s modulus is smaller than the actual value, it is applicable to calculate the ratio of the Young’s moduli of different materials, that is, the relative value. The Young’s modulus, or slope of the linear section, varies slightly depending on which location data is used and how much data is included. In order to obtain a more accurate ratio of Young’s moduli between materials using the RTT results, a post-processing method for the ring tensile test results that can prevent such human errors is proposed as follows. First, the slope of the linear section is obtained using the displacement and load when the load increase is the largest and the displacement and load of the position that is 95% of the maximum load increase. To replace the section where the ring-shaped specimen is stretched at the beginning of the F-D curve, a straight line equal to the slope of the linear section is drawn to the displacement axis from the position of maximum load increase and moved to the origin to obtain the final F-D curve for a RTT. Lastly, the yield stress uses the stress at the point where the 0.2% offset straight line and the F-D curve meet as suggested in the ASTM E8/E8M-11 “Standard test methods for tensile testing of metallic materials”. RTT results post-processing method was coded using FORTRAN language so that it could be performed automatically. In addition, sensitivity analysis of the included data range on the Young’s modulus was performed by using the included data range as 90%, 85%, and 80% of the maximum load increase.
        2.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Coating a culture plate with molecules that aid in cell adhesion is a technique widely used to produce animal cell cultures. Extracellular matrix (ECM) is known for its efficiency in promoting adhesion, survival, and proliferation of adherent cells. Gelatin, a cost-effective type of ECM, is widely used in animal cell cultures including feeder-free embryonic stem (ES) cells. However, the optimal concentration of gelatin is a point of debate among researchers, with no studies having established the optimal gelatin concentration. Methods: In this study, we coated plastic plates with gelatin in a concentrationdependent manner and assessed Young’s modulus using atomic force microscopy (AFM) to investigate the microstructure of the surface of each plastic plate. The adhesion, proliferation, and differentiation of the ESCs were compared and analyzed revealing differences in surface microstructure dependent on coating concentration. Results: According to AFM analysis, there was a clear difference in the microstructure of the surface according to the presence or absence of the gelatin coating, and it was confirmed that there was no difference at a concentration of 0.5% or more. ES cell also confirmed the difference in cell adhesion, proliferation, and differentiation according to the presence or absence of gelatin coating, and also it showed no difference over the concentration of 0.5%. Conclusions: The optimum gelatin-coating for the maintenance and differentiation of ES cells is 0.5%, and the gelatin concentration-mediated microenvironment and ES cell signaling are closely correlated.
        4,000원
        3.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 국내 선박해양플랜트연구소에 구축된 빙해수조의 빙특성 중에서 모형빙의 두께와 유효탄성계수 산출과정이 소개되었다. 수조에서 결빙되는 빙판은 크기가 가로 세로각각 30 m 정도에 두께는 40mm정도이다. 모형선의 실험결과를 쇄빙선 설계에 사용하기 위하여 빙 특성 정보가 필요하다. 사람이 빙판을 일부 절개하고 일일이 손으로 두께를 측정하는 것을 지양하기 위하여 초음파 기기를 사용하였는데 저주파 장비를 사용하여 작은 샘플 모형빙에 대한 두께는 계측되었다. 하지만 완벽한 계측을 위해서는 송수신 일체형 저주파 센서나 정확한 위치가 설정된 분리형 센서 혹은 고가의 특수 장치가 필요함을 확인하게 되었다. 한편 빙판의 처짐량을 간이식 LVDT로 계측하고 이를 탄성체 위에 놓인 무한 판의 특성길이 관계식에 대입하여 빙의 유효탄성계수를 산출하였는데 외국의 결과와 유사함이 입증되었다.
        4,000원