The diurnal flight pattern of Platypus koryoensis (Murayama) was examined using sticky traps attached to the trunks of oak trees in central Korea in 2011. The flight activities of the beetle were estimated on the basis of 2-h interval trap catches from 05:00 to 17:00, between June 9 and July 21 (the peak flight period of the beetle). Peak flight time of the beetle ranged from 09:00 to 13:00, with variations due to the day surveyed and the facing slope. The flights began when the air temperature reached 16.7 °C, and the flights peaked when the air temperature was 23.6 °C. Flights were not observed during rainfall, suggesting that rainfall is one of the factors that influence beetle flight. The time of sunrise was not significantly correlated with the flight initiation time. The direction of flight along with the slope was changed bidirectional to unidirectional (movement from upslope to downslope) between 9:00 and 13:00.
The Alfin-like transcription factor family is one of the important gene families in eukaryotic plants. They are involved in many biological processes, such as lignocellulosic wall biosynthesis, meristem development, metabolite transport, and responses to biotic and abiotic stresses. But the regulatory mechanism of these genes involved in stresses responses is still unrevealed. In this study, we identified a total of 16 Alfin-like genes from Brassica rapa database. The 16 putative Alfin-like proteins were divided into four groups (group I-IV) based on structural and phylogenetic analyses. Accordingly, this study analyzed stress resistance-related functions of all B. rapa Alfin-like (BrAL) genes through a homology study with existing biotic and abiotic stress resistance-related Alfin-like genes of other plant species and found a high degree of similarity with them. Subsequently, these genes were further investigated by real-time quantative PCR under cold, salt and drought stresses and after infection with Fusarium oxysporum f. sp. conglutinans in B. rapa. These genes showed an organ specific expression and all genes differentially expressed in Chiifu compared to Kenshin under cold stress. Ten and seven BrALs responded highly in Kenshin compared to Chiifu under salt and drought stresses respectively. In addition, six BrAL genes showed responsive expression after Fusarium oxysporum f. sp. conglutinans infection in B. rapa. Interestingly, four BrAL genes showed responses against both biotic and abiotic stress factors. Thus, our result provides a useful reference data set as the basis for functional analysis and utilization in the resistance molecular breeding of B. rapa.
sequence and more than fifty thousand proteins have been obtained to date. Transcription factors (TFs) are important regulators involved in plant development and physiological processes and the AP2/ERF protein family contains TFs that also plays a crucial role as well and response to biotic and abiotic stress conditions in plants. However, no detailed expression profile of AP2/ERF-like genes is available for B. oleracea. In the present study, 226 AP2/ERF TFs were identified from B. oleracea based on the available genome sequence. Based on sequence similarity, the AP2/ERF superfamily was classified into five groups (DREB, ERF, AP2, RAV and Soloist) and 15 subgroups. The identification, classification, phylogenetic construction, conserved motifs, chromosome distribution, functional annotation, expression patterns and interaction network were then predicted and analyzed. AP2/ERF TFs expression levels exhibited differences in response to varying abiotic stresses based on expressed sequence tags (ESTs). BoCBF1a, 1b, 2, 3 and 4, which were highly conserved in Arabidopsis and B. rapa CBF/DREB genes families were well characterized. Expression analysis enabled elucidation of the molecular and genetic level expression patterns of cold tolerance (CT) and susceptible lines (CS) of cabbage and indicated that all BoCBF genes responded to abiotic stresses. Comprehensive analysis of the physiological functions and biological roles of AP2/ERF superfamily genes and BoCBF family genes in B. oleracea is required to elucidate AP2/ERF, which will provide rich resources and opportunities to understand abiotic stress tolerance in crops.
천연집단에 서식하는 개비자나무 개체들을 이용해 무생물 및 생물적 환경인자가homoharringtonine(HHT) 함량에 미치는 영향을 조사하여 향후 항암제 가능성이 있는 HHT의 고부가가치 산업적인 생산이 기대되는 연구에 기초자료를 제공하고자 본 연구를 수행하였다. 무생물적 환경인자(토양습도, 토양pH, 서식밀도, 기온)와 HHT 함량과의 상관관계에 있어 HHT 는 토양습도(0.77)와 토양pH(-0.68)에서 높은 상관을 보였다. 고도에 따른 무생물적 환경인자 (토양습도, 토양pH)와 HHT 의 함량 관계에 관해 다중회귀 분석을 실시한 결과, 토양 습도의 회귀계수(26.48***) 만 유의하여 토양 습도가 상대적으로 HHT 함량에 높은 영향을 미치는 것으로 나타났다. 생물적 환경인자(damage index)에 따른 HHT 함량에 미치는 영향을 살펴 본 결과, HHT는 2차곡선회귀적으로 증가하다 감소하는(H=278.23+1242D-398.87D2) 경향을 보였고 damage index는 HHT 함량에 높은 영향을 미치는 것으로 분석되었다. 마지막으로 HHT 의 함량에 영향을 미치는 최적환경인자를 분석한 결과, damage index와 토양 습도 모두가 2차다항회귀식으로 가장 적합하였고 결정계수는 각각 0.73와 0.67로 damage index가 상대적으로 HHT 함량에 높은 영향을 미치는 것으로 나타났다. 이는 섭식자 또는 균류와 같은 스트레스로 인한 방어기작이 HHT 의 생성에 높은 영향을 미치는 것으로 판단된다.