A cultivar (Malus domestica cv. Fuji) of apple was selected to make apple peel (AP) powder by three different powdering methods. Frozen AP was thawed and subsequently was dried or ground without drying. After AP was dried by hot-air drying at 60°C or freeze-drying, the dried AP was ground using a conventional blender. Separately, the thawed AP was powered by using a cryogenic micro grinding technology (CMGT). The ground AP and three types of AP powder were extracted using deionized water, 20, 40, 60, 80, or 100% methanol, followed by vacuum evaporation. The total phenolics contents (TPC), total flavonoids contents (TFC), DPPH, and ABTS radical scavenging capacities of each extract were compared to determine an efficient powdering method. Lyophilized AP powder extract using 60% methanol showed the highest TPC and DPPH radical scavenging capacity. In contrast, 60% methanol extract of the powder by CMGT, resulting in the smallest particle, exhibited the highest TFC and ABTS radical scavenging capacity. This study suggests that the extraction yield of bioactive compounds from AP may be varied according to different powdering methods and that a new powdering process such as CMGT may be applicable to develop functional foods efficiently.
Consumption of fruits and vegetables has been conducted to be effective in the prevention of chronic diseases. In this study, 70% methanol, 70% ethanol and chloroform-methanol mixture (CM, 2:1, v/v) were used as solvents in the extraction of apple peels. The total phenol content, total flavonoid content and antioxidant activity of various extracts were investigated using in vitro assays. The extract obtained by 70% methanol showed the highest total phenol content (20.87±0.17 mg CAE/g), ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] radical scavenging activity and ferric reducing antioxidant power. However, 70% ethanol extract possessed the strongest antioxidant activity assayed by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and β-carotene bleaching method. And CM extract was found to show the highest total flavonoid content with the value of 9.26±0.06 mg QE/g. These results indicated that apple peels can be used in dietary applications with a potential to reduce oxidative stress.
Apple and pear are popular fruits consumed in Korea and are common fruit in daily diet. In order to compare the antioxidant activity of the apple and pear peels, total polyphenol contents, total flavonoid contents, ABTS+ free radical scavenging activity, and DPPH free radical scavenging activity were measured from hot water, ethanol, and methanol extracts of the two fruit peels. The total polyphenol and flavonoid contents were highest in 95% methanol extracts of the apple peelsand 70% ethanol extract of the pear peels, respectively. Total polyphenol contents of the pear peels were higher than that of apple peels, and total flavonoid contents of the apple peels were higher than that of pear peels. The apple and pear peels had the highest ABTS+· and DPPH free radical scavenging activity in 95% methanol extracts and 70% ethanol extracts, respectively. ABTS+· and DPPH free radical scavenging activity of pear peels was higher than that of apple peels, and the DPPH free radical scavenging activity of apple and pear peels were detected in hot water, 95% methanol, and 70% ethanol extracts, respectively. Ascorbic acid, a synthetic antioxidant used as positive control, had significantly higher scavenging activity than the apple and pear peels. In conclusion, the apple and pear peelshave great potential as natural antioxidants. Therefore, above results should be considered to provide the possibility for the development of high functional antioxidants.