검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2016.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphite was diffusion-bonded by hot-pressing to W-25Re alloy using a Ti interlayer. For the joining, a uniaxial pressure of 25 MPa was applied at 1600 oC for 2 hrs in an argon atmosphere with a heating rate of 10 oC min−1. The interfacial microstructure and elemental distribution of the W-25Re/Ti/Graphite joints were analyzed by scanning electron microscopy (SEM). Hot-pressed joints appeared to form a stable interlayer without any micro-cracking, pores, or defects. To investigate the high-temperature stability of the W-25Re/Ti/Graphite joint, an oxy-acetylene torch test was conducted for 30 seconds with oxygen and acetylene at a 1.3:1 ratio. Cross-sectional analysis of the joint was performed to compare the thickness of the oxide layer and its chemical composition. The thickness of W-25Re changed from 250 to 20 μm. In the elemental analysis, a high fraction of rhenium was detected at the surface oxidation layer of W-25Re, while the W-25Re matrix was found to maintain the initial weight ratio. Tungsten was first reacted with oxygen at a torch temperature over 2500 oC to form a tungsten oxide layer on the surface of W-25Re. Then, the remaining rhenium was subsequently reacted with oxygen to form rhenium oxide. The interfacial microstructure of the Ti-containing interlayer was stable after the torch test at a temperature over 2500 oC.
        4,000원
        2.
        1997.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Joining of AIN ceramics to W and Cu by active-metal brazing method was tried with use of (Ag-Cu)-Ti alloy as insert-metal. Joints were produced under various conditions of temperature, holding time and Ti-content in (Ag-Cu) alloy Reaction and microstructural development in bonded interface were investigated through observation and analysis by SEM/EDS, EPMA and XRD. Joint strengths were measured by shear test. Bonded interface consists of two layers: an insert-metal layer of eutectic Ag- and Cu-rich phases and a reaction layer of TiN. Thickness of reaction layer increases with bonding temperature, holding time and Ti-content of insert-metal. It was confirmed that the growth of reaction layer is a diffusion-controlled process. Activation energy for this process was 260 KJ/mol which is lower than that for N diffusion in TiN. Maximum shear strength of 108 MPa and 72 MPa were obtained for AIN/W and AIN/Cu joints, respectively. Relationship between processing variables, joint strength and thickness of reaction layer was also explained.
        4,000원
        3.
        2015.04 서비스 종료(열람 제한)
        This paper presented to study used Abaqus on steel plate bonded reinforcement technology for column to beam connections, and then the result showed that steel plate bonded reinforcement technology has great reinforcement effect for RC column to beam joint. Also the steel plate bonded reinforcement technology was safety and convenient operation.