검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100– 450 μm are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80oC and 200oC in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800oC for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.
        4,000원
        2.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen-doped carbon nanosheets with a developed porous structure were prepared from polyurethane foams by hydrothermal carbonization following ZnCl2 chemical activation. Scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, solid state 13C nuclear magnetic resonance (NMR) spectra and X-ray photoelectron spectroscopy were used to characterize the nitrogen-doped carbon nanosheet structure and composition. The removal of Cr(VI) by the N-doped carbon nanosheets was investigated. The results showed that the maximum removal capacity for chromium of 188 mg/g was found at pH=2.0 with PHC-Z-3. pH had an important effect on Cr(VI) removal and the optimal pH was 2.0. Moreover, amino groups and carboxyl groups in the nitrogen-doped carbon nanosheet played important roles in Cr(VI) removal, and promoted the reduction of Cr(VI) to Cr(III).
        4,000원
        4.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Monolithic carbon foams with hierarchical porosity were prepared from polyurethane templates and resol precursors. Mesoporosity was achieved through the use of soft templating with surfactant Pluronic F127, and macroporosity from the polyurethane foams was retained. Conditions to obtain high porosity materials were optimized. The best materials have high specific surface areas (380 and 582 m2 g–1, respectively) and high electrical conductivity, which make them good candidates for supports in sensors. These materials showed an almost linear dependence between the potential and the pH of aqueous solutions.
        4,000원
        6.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, macroporous carbon foams were successfully prepared with phenol and formaldehyde as carbon precursors and an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6), as a pore generator by employing a polymerization-induced phase separation method. During the polycondensation reaction of phenol and formaldehyde, BMIPF6 forms a clustered structure which in turn yields macropores upon carbonization. The morphology, pore structure, electrical conductivity of carbon foams were investigated in terms of the amount of the ionic liquid. The as-prepared macroporous carbon foams had around 100-150 μm-sized pores. More importantly, the electrical conductivity of the carbon foams was linearly improved by the addition of BMIPF6. To the best of the author's knowledge, this is the first result reporting the possibility of the use of an ionic liquid to prepare porous carbon materials.
        4,000원