Plant-parasitic nematodes are the most devastating group of plant pathogens worldwide and are extremely challenging to control. In the present study, we have performed a genome wide analysis to identify common genes among four nematode species consisting of root-knot nematodes (Meloidogyne incognita and Meloidogyne hapla), cyst nematode (Heterodera glycines), and free living nematode (Caenorhabditis elegans) respectively. Using their whole genome sequences, we predicted 15,274 genes from M. incognita, 38,149 genes from M. hapla, 8,061 genes from H. glycines and 23,894 genes from C. elegans, where, among the predicted genes, 1,358, 1,350, 1,401, 1,365 respectively from each nematode, code for common groups of proteins. Further, 2,067, 2,086, 1,566, 2,903 genes were recollected using Clusters of Orthologous Groups (COG) database. Under our search criteria, a total of 800 common genes were identified in all the four studied nematode genomes. The most annotated conserved genes were obtained from four different species using Basic Local Alignment Searching Tool (BLAST). Uni- Prot Taxon identifier database was used to elucidate their taxonomic classification such as 698 genes under kingdom Metazoa, 660 genes confined to Nematoda, 290 genes in Chordata and 660 genes falling under class Chromadorea. The biochemical characterization of proteins expressed by these genes was examined using Pedant-Pro sequence analysis. The protein length, molecular weight, isoelectric point (pI), and transmembrane domain of the coded proteins were at a range of 300 to 999 amino acids (40.9%), molecular weight of over 100 kDa (96%), pI from 4.5 to 5.5 (27.6%) and 0 (56.6%), respectively. To classify protein function, the obtained BLAST hits were assigned to Gene Ontology classification scheme. The fractions of protein function were distributed as cellular component, biological processes and molecular function of the cell (22.2%), multicellular organism process (15.8%) and binding (48.3%), respectively. The current study provides an excellent resource for nematode functional genomics studies, which can be utilized further for studies on role of genes involved in nematode biological processes.
Although it is well known that low-molecular-weight glutenin subunits (LMW-GS) affects bread and noodle processing quality, the function of specific LMW-GS proteins mostly remain unclear. It is important to find a corresponding gene for a specific LMW-GS protein in order to understand the function of the specific LMW-GS protein. The objective of this study was to identify LMW-GS genes and haplotypes using well known Glu-A3, Glu-B3 and Glu-D3 gene specific primers and to interlink their protein products by proteomic approaches in a wheat variety. A total of 36 LMW-GS genes and pseudo-genes were amplified including 11 Glu-3 gene haplotypes, designated as GluA3-13K and GluA3-22K (pseudogene) at Glu-A3 loci, GluB3-33K and GluB3-43K at Glu-B3 loci and GluD3-11K, GluD3-21K, GluD3-31K, GluD3-42K, GluD3-5K, GluD3-6K and GluD3-393K (pseudogene) at Glu-D3 loci. To determine the relationship between gene haplotypes and their protein products (to identify the corresponding LMW-GS proteins), we conducted N-terminal amino acid sequencing and tandem mass spectrometry (MS/MS) analysis of the 17 LMW-GS spots separated by 2-DGE. Successfully, LMW-GS proteins of the Glu-3 gene haplotypes except pseudo-genes mentioned above were identified. This is the first report on comprehensive characterization of LMW-GS genes and their corresponding proteins and establishment of specific correspondence between each other in a single wheat cultivar. Our approach will be useful to understand the molecular basis of the LMW-GS and to study their contribution to the end-use quality of flour.
국내 밀 품종 조경, 금강 그리고 중국 밀 품종인 Chinese spring의 genomic DNA를 주형으로 LMW-GS 특이 프라이머세트를 이용하여 3개의 새로운 LMW-GS i 타입 유전자를분리하였고 이들의 분리된 유전자는 각 각 조경 II-2, CSIII-5 그리고 금강 6-12로 명명하였다. 이들의 유추 아미노산을 분석한 결과 20개의 시그널 펩타이드, 이소루신으로 시작하는 N-말단 부분 그리고 글루타민이 많은 반복도메인 그리고 C-말단 부분으로 구성되어 있으며 조경 II-2와 CS III-5는 전형적인 LMW-GS i-type 유전자처럼 C-말단에 8개의 시스테인 잔기가 있었다. 금강 6-12는 특이하게도 하나 더 많은 9개의 시스테인 잔기가 존재하였는데 이 여분의 시스테인 잔기는7번째 시스테인 잔기의 11잔기 앞에 존재하며 TAT(타이로신)이 TGT(시스테인)로 바뀐 결과이다. LMW-i 타입 글루테닌 유전자들 간의 SNP와 InDel을 확인하기 위해서 본 연구에서 클로닝 된 조경 II-2, CS III-5 그리고 이전에 본 그룹에서 확인된 조경 HQ619933와 기존 문헌에 나와 있는 6배 체 밀 유래의 10개의 LMW-GS i 타입 유전자들과 다중염기서열 분석을 실시하였고, 이들 사이에서 15개의 SNP와 1개의 insertion이 확인되었다. 밀 품종 조경의 Glu-A3 단백질을 동정하기 위해 글루테닌을 추출 이차원전기영동을 하고 Glu-A3c 위치의 스팟을 절취하여 in-gel digestion한 후 LC-ESI MS/MS 분석을 수행한 결과 조경의 i 타입 LMW-GS 유전자 좌는 Glu-A3c로 확인되었다. LMW-i 타입 글루테닌 유전자들의 연관 관계를 분석하기 위해 본 연구 그룹에서 클로닝 한 조경 II-2, CS III-5, 금강 6-12 그리고 조경 HQ6199333와 Genebank DB의 35개의 LMW-i 타입 글루테닌 유전자의 유추 아미노산 서열을 이용하여 Phylogenic tree를 완성하였다. 이들 39개의 계통도 분석 결과 이배체 밀과 4배체 밀의 LMi 타입 글루테닌이 육배체 밀의 LMW-i 타입 글루테닌과 크게 나눠지는 것을 확인하였으며, 육배체 밀의 LMW-i 타입 글루테닌들은 Glu-A3a부터 GluA-3g까지 7개 subgroup으로 나눠지는 것을 확인하였다. 금강 6-12는 GluA-3a와 GluA-3c 사이에 존재하였고 조경 II-2와 CS III-5는 GluA-3d와 일본 연질 밀인 농림 61의 AB062878과 같은 subgroup에 존재하였고 조경 HQ6199333은 Glu-A3c subgroup에 위치하였다. LMW-i 타입 글루테닌 유전자들의 유추 아미노산 다중서열분석결과 반복 도메인은 length polymorphism은 179~149개 정도의 long 타입과 91, 51, 10, 2개의 short 타입으로 나눠지고 이것은 long 타입과 short 타입 LMW-i 타입 글루테닌 유전자를 구분 할 수 있는 마커의 근거가 된다.
미성숙 종자로부터 추출된 전체 RNA를 이용하여 합성한 cDNA와 LMW-GS 특이 프라이머세트를 이용하여 43개의 LMW-GS 유전자를 분리하였다. 각각의 유추 아미노산은 상동성이 높은 20개의 시그널 펩타이드, N-말단 영역, 반복서열영역 그리고 C-말단 영역을 가지며 C-말단 영역에 분자내 혹은 분자간 이황화 결합을 형성하는 전형적인 8개의 시스테인을 가지고 있었다. 이들 시스테인의 위치는 첫번째, 일곱번째를 제외하고는 보존되어 있었다. Ikeda