검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        양이온 계면활성제인 tetradecyltrimethylammonium bromide (TTAB)에 의한 크레졸 이성질 체의 가용화에 미치는 치환기, 온도 그리고 NaCl과 n-부탄올과 같은 첨가제의 효과를 UV-Vis법으로 측정하였다. 가용화상수(K8)값은 o-크레졸<m-크레졸<p-크레졸 순으로 증가하였으며, 온도의 증가에 따라 이들 K8값은 감소하였다. 크레졸 이성질체들의 가용화에 대하여 계산한 ΔG0값과 ΔH0값은 모두 음의 값을 나타내었다. 그러나 ΔS0값은 모두 양의 값을 나타내었다. 또한 ΔG0값은 n-부탄올의 농도가 증가할수록 증가하는 경향을 그러나 NaCl의 농도가 증가할수록 더욱 감소하는 경향을 보였다. 이러한 사실들로부터 크레졸 이성질체들의 가용화에는 엔탈피와 엔트로피가 동시에 기여하고 있으며, 또한 크레졸분자들이 가용화되는 위치는 미셀의 표면이나 palisade층에서 주로 이루어짐을 알 수 있다.
        4,000원
        3.
        1990.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrochemical oxidation behavior of p-cresol on platinum anode had been investigated by cyclic voltammetric method for the variation of concentration, scan rate of potential, temperature and pH of electrolyte. The oxidation potential of p-cresol was dependent on the electrolyte until the pH=11.5, but in basic solution over its, it was held at o.40V(vs. SCE). A diffusion was rate determining step of oxidation as irreversible reaction by the transfer atone electron. The current of peak was proportional to concentration of p-cresol until the 0.1N and optimum concentration was found to be about 0.1N. The activation energy was calculated for 5.8kcal/mol from the plot of log Il vs. 1/T.
        4,000원
        4.
        2001.04 KCI 등재 서비스 종료(열람 제한)
        Several microorganisms which degrade phenol and trichloroethylene (TCE) were isolated from the activated sludge of a wastewater treatment plant. Among them, one isolate EL-04J showed the highest degradability and was identified as a Pseudomonas species according to morphological, cultural and biochemical properties. The phenol-induced cells of Pseudomonas EL-04J, which were preincubated in the mineral salts medium containing phenol as a sole carbon source, degraded 90% of 25μM TCE within 20 h. This strain could also utilize some of methylated phenol derivatives (o-cresol, m-cresol and p-cresol) as the sole source of carbon and energy. Cresol-induced cells of Pseudomonas EL-04J also cometabolized TCE.
        6.
        1997.04 KCI 등재 서비스 종료(열람 제한)
        In order to find the most fitted biodegradation model, biodegradation kinetics model to the initial phenol and p-cresol concentrations were investigated and had been fitted by the linear regression. Bacteria capable of degrading p-cresol were isolated from soil by enrichment culture technique. Among them, strain M1 capable of degrading p-cresol has also degraded phenol and was identified as the genus Micrococcus from the results from of taxonomical studies. The optimal conditions for the biodegradation of phenol and pcresol by Micrococcus sp. M1 were NH_4NO_3 0.05%, pH 7.0, 30℃, respectively, and medium volume 100㎖/250㎖ shaking flask. Micrococcus sp. M1 was able to grow on phenol concentration up to 14mM and p-cresol concentration up to 8mM. With increasing substrate concentration, the lag period increased, but the maximum specific growth rates decreased. The yield coefficient decreased with increasing substrate concentration. The biodegradation kinetics of phenol and p-cresol were best described by Monod with growth model for every experimented concentration. In cultivation of mixed substrate, p-cresol was degraded first and phenol was second. This result implies that p-cresol and phenol was not degraded simultaneously.