검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2022.10 구독 인증기관·개인회원 무료
        When decommissioning a nuclear power plant, the structure must be made to a disposable size. In general, the cutting process is essential when dismantling a nuclear power plant. Mainly, thermal cutting method is used to cutting metal structures. The aerosols generated during thermal cutting have a size distribution of less than 1 μm. The contaminated structures are able to generate radioactive aerosols in the decommissioning. Radioactive aerosols of 1 μm or less are deposited in the respiratory tract by workers’ breathing, causing the possibility of internal exposure. Therefore, workers must be protected from the risk of exposure to radioactive aerosols. Prior knowledge of aerosols generated during metal cutting is important to ensure worker safety. In this study, the physical and chemical properties of the aerosol were evaluated by measuring the number and mass concentrations of aerosols generated when cutting SUS304 and SA508 using the laser cutting method. High-resolution aerosol measuring equipment (HR-ELPI+, DEKATI) was used to measure the concentration of aerosols. The HR-ELPI+ is an impactor-type aerosol measuring equipment that measures the aerosol number concentration distribution in the aerodynamic diameter range of 6 nm to 10 um in real-time. And analyze the mass concentration of the aerosol according to the diameter range through the impactor. ICP-MS was used for elemental mass concentration analysis in the aerosol. Analytical elements were Fe, Cr, Ni and Mn. For the evaluation of physical and chemical properties, the MMAD of each element and CMAD were calculated in the aerosol distribution. Under the same cutting conditions, it was confirmed that the number concentration of aerosols generated from both materials had a uni-modal distribution with a peak around 0.1 um. CMAD was calculated to be 0.072 um for both SUS304 and SA508. The trend of the CMAD calculation results is the same even when the cutting conditions are changed. In the case of MMAD, it was confirmed that SUS304 had an MMAD of around 0.1 μm in size for only Fe, Cr and Mn. And SA508, Fe, Cr, Ni and Mn were all confirmed to have MMAD around 0.1 μm in size. The results of this study show that a lot of aerosols in the range of less than 1 μm, especially around 0.1 μm in size, are generated when metal is cut using laser cutting. Therefore, in order to protect the internal exposure of workers to laser metal cutting when decommissioning NPPs, it is necessary to protect from nano-sized aerosols beyond micron size.
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박의 건조공정 중 강재의 절단과 곡 가공, 용접에 있어 화염의 사용은 필수적이다. 현재 조선소의 강재 절단과 가공 과정에서 는 아세틸렌이 화염 연료로 가장 많이 사용되고 있지만, 폭발 사고의 위험성과 상대적으로 적은 발열량의 한계로 최근에는 프로판 연료의 활용이 증가하고 있다. 하지만 프로판 연료는 상대적으로 가공 속도가 느리고, 가공 시 슬래그의 발생빈도가 높아 품질이 저하된다. 대체 연료로써 프로필렌이 주목받으며 가공 속도와 품질향상에 대한 기대가 증가하고 있다. 프로필렌은 발열량이 우수한 연료로 강재 가공 간 생산성과 가공 품질의 우수성을 갖추고 있다. 이에 본 논문에서는 프로판, 프로필렌 화염을 이용한 철판 가공 시 각 연료의 연소 특성을 분 석 및 비교하였다. 프로필렌 화염을 이용한 철판 가공 시 배출되는 온실가스와 유해가스를 프로판 연료의 배출량과 비교하여 저감효과를 실험적으로 확인하였다. 또한, 가공 연료에 따른 입열량이 선박용 강재의 기계적 강도 변화에 미치는 영향을 알아보기 위해 열 분포실험과 인장시험을 수행하였다. 실험 결과로, 대체 연료인 프로필렌을 사용할 때 프로판 연료에 비해 온도분포가 고르게 나타났다. 기계적 강도 실 험 결과로 인장강도의 저하는 관찰되지 않았으나, 변형률은 감소하는 경향을 보였다. 본 연구의 결과를 바탕으로 향후 실제 조선소의 강재 가공 및 절단과정에 적용하였을 때, 발생하는 문제점에 대한 분석 및 보완연구를 수행할 예정이다.
        4,000원
        3.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the development of advanced ceramic tools, material improvements and design freedom are critical in improving tool performance. However, in the die press molding method, many factors limit tool design and make it difficult to develop innovative advanced tools. Ceramic 3D printing facilitates the production of prototype samples for advanced tool development and the creation of complex tooling products. Furthermore, it is possible to respond to mass production requirements by reflecting the needs of the tool industry, which can be characterized by small quantities of various products. However, many problems remain in ensuring the reliability of ceramic tools for industrial use. In this study, alumina inserts, a representative ceramic tool, was manufactured using the digital light process (DLP), a 3D printing method. Alumina inserts prepared by 3D printing are pressurelessly sintered under the same conditions as coupon-type specimens prepared by press molding. After sintering, a hot isostatic pressing (HIP) treatment is performed to investigate the effects of relative density and microstructure changes on hardness and fracture toughness. Alumina inserts prepared by 3D printing show lower relative densities than coupon specimens prepared by powder molding but indicate similar hardness and higher fracture toughness values.
        4,000원
        4.
        2016.10 구독 인증기관·개인회원 무료
        The consumption of pre-treated vegetables (including fresh-cut vegetables) has been significantly increased because of their ease of use for cooking. Vegetable cutting machine has been widely utilized for producing fresh-cut vegetables or agricultural products with different sizes; however, its design standard is not specifically established depending on types of agricultural products. Therefore, this study was conducted to determine mechanical properties (compressive and shear force) of targeted agricultural products (radish, carrot, squash, cucumber, shiitake mushroom and sweet potato) for developing multipurpose vegetable cutting machine. According to ASAE standard (s368.3), compressive and shear force of targeted agricultural products were measured by using custom built UTM (universal testing machine). Shape type of samples and speed ranges (5~15 mm/min) of loading rate on bioyield and shear points were varied by targeted agricultural products. The range of averaged bioyield points of targeted agricultural products were between 7.89 and 146.98 N. On the other hands, their averaged shear points were from 22.50 to 53.47 N. Results clearly showed that the bioyield and shear points of targeted agricultural products were thoroughly affected by their components. As accumulating compressive and shear points of agricultural products, it can be technical feasible to establish the design standard and control mechanism of multipurpose vegetable cutting machine.
        6.
        2004.04 KCI 등재 서비스 종료(열람 제한)
        Waste water-soluble cutting oil was treated with W1 type #1 and W1 type #2. The properties of the original water-soluble cutting oil were pH=10.4, viscosity=1.4cP, CODcr=44,750 ppm, and TOC=10,569 ppm. However, the properties of the oil used for more than 3 months were changed to pH=7.82, viscosity=2.1cP, CODcr=151,000 ppm, and TOC=74,556 ppm. It might be attributed to the fact that molecular chains were cut due to thermal oxidation and impurities such as metal chips were incorporated in to the oil during the operation processes. To prevent the putrefaction of oil, the sterilization effect of ozone and UV on the microorganism in the oil was investigated. Ozone treatment showed that 99.99% of the microorganism was annihilated with 30 minutes contact time and 60 minutes were necessary for the same effect when UV was used. Ozone treatment could cut molecular chains of the oil due to strong sterilization power, which was evidenced by the increase of TOC from 25,132 ppm at instantaneous contact to 28,888 ppm at 30 minutes contact time. However, UV treatment didn't show severe changes in TOC values and thus, seemed to cause of severe cut of molecular chains. When the activated carbon was used to treat the waste water-soluble cutting oil, TOC decreased to 25,417 ppm with 0.1g carbon and to 15,946 ppm with 5.0g carbon. This results indicated that the waste oil of small molecular chains could be eliminated by adsorption. From the results, it could be concluded that these treatment techniques could be proposed to remove the waste oil of small molecular chains resulting in the degradation of the oil properties. In addition, these experimental results could be used for the correlation with future works such as investigation of the molecular distribution according to the sizes, lengths, and molecular weight of the chains.