검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pleurotus eryngii, a white rot fungus, produces two extracellular lignin-degrading enzymes, laccase and manganese peroxidase (MnP). Owing to these enzymes, P. eryngii efficiently degrades synthetic chemicals such as azo, phthalocyanine, and triphenyl methane dyes. In this study, we investigated the degradation processes of four aromatic dyes, congo red (CR), methylene blue (MB), crystal violet (CV), and malachite green (MG), by P. eryngii under solid and liquid culture conditions. CR and MG were the most quickly degraded under solid and liquid culture conditions, respectively. However, compared to CR, CV, and MG, MB was not degraded well under both culture conditions. The activities of ligninolytic enzymes (laccase and MnP) were also investigated. Laccase was identified to be the major enzyme for dye degradation. A positive relationship between decolorization and enzyme activity was observed for CR, MB, and CV degradation. In contrast, decolorization of MG ensued after high enzyme activity. These results indicate that the degradation process differs between MG and the other aromatic dyes. Therefore, P. eryngii could be a potential tool for the bioremediation of synthetic aromatic dye effluent.
        4,000원
        2.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        일상적인 화학제품들의 사용량이 증가함에 따라 사용되었던 염료 폐기물 처리 또한 중요한 환경 적인 문제로 대두되었다. 이러한 염료폐기물은 광촉매를 이용하여 분해시킬 수 있는데, 졸-겔 기술을 활용 하면 매우 비용 효율적으로 광촉매를 합성할 수 있다. 졸-겔 기술은 나노스케일의 막 형성에도 상당히 유 용하며 간단하게 다층구조를 형성할 수도 있다. 본 연구에서는 다양한 염료 분해에 효과가 있는 산화아연 (ZnO) 이용하여 다중 회전도포 방법으로 다층구조(3층, 5층)를 가진 ZnO 막을 형성하였다. 성능비교를 위해 단일 회전도포 방법에 의한 단층구조를 가진 ZnO 막을 대조군으로 준비하였다. X선 회절분석기 및 에너지 분산 X선 분광계를 이용하여 ZnO의 구조 및 원소분석을 수행하였고, 주사전자현미경을 통해 나노 선같은 표면형상을 관찰할 수 있었다. 추가적으로 UV-Vis 분광광도계를 활용하여 자외선의 흡수도를 측정 하였다. 5층구조를 가진 ZnO 막이 단층 구조를 가진 ZnO 막에 비해 모의 메틸렌 블루를 49% 더 많이 분해하였다. 결론적으로, 다층구조를 가진 ZnO 는 메틸렌블루 염료를 더욱 효과적으로 분해하는 광촉매로 써 유용하다는 알 수 있었다.
        4,000원
        3.
        2014.06 구독 인증기관 무료, 개인회원 유료
        Trametes versicolor showed the ability of degrading synthetic dyes such as congo red (CR) and methylene blue (MB) in solid and liquid culture conditions. The T. versicolor strains isolated in Korea degraded MB more efficiently than CR, differently most of other white mushrooms known to have difficulties in degrading MB than other dyes. Thus the Koren strains of T. versicolor showed the commercial potential to be used for cleaning dye-contaminated region without any patent-related problem. The main enzyme responsible for dye deradation was laccase. The manganese peroxidase (MnP) was also detected and supposed to be involved in the degradation process of synthetic dyes. However, no lignin peroxidase (LiP) was detected from degradation process, indicating LiP is not the enzyme T. versicolor use to degrade CR and MB.
        4,000원
        4.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A nanocomposite consisting of Fe3O4 and MWCNT was produced via sol-gel technique using FeCl3 along with MWCNT by calcination at 300℃. The degradation effect of rhodamine B dye has been investigated under UV illumination in a darkroom. The degradation reaction was studied by monitoring the discoloration of dye as a function of irradiation time using UV-visible spectrophotometeric technique. The Fe3O4-MWCNT samples have continuous degradation ability under the UV illumination with the first order kinetics and the dye removal was better than in the pristine Fe3O4. The resultant composite catalyst was found to be efficient for the photo-Fenton reaction of the dye.
        4,000원
        5.
        2018.10 서비스 종료(열람 제한)
        Background : Panos extract is a mixture of four Panax plant extracts namely Dendropanax morbifera, Panax ginseng, Acanthopanax senticosus and Kalopanax septemlobus. We intended to use Panos extract for ZnO nanoparticles(NPs) synthesis and application for waste water treatment. Methods and Results : In the present study, we have synthesized Panos ZnO nanoparticles via co precipitation method. Characterization of the NPs has been done using X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and UV-Visible spectroscopy. An average of 75% efficacy in degrading the methylene blue dye has been observed. The nanoparticles showed antibacterial activity against E. coli and S. aureus. Conclusion : The results shows that Panos ZnO NPs can be a potential eco-friendly and economical tool for waste water management in the current scenario where there an intense urge to remediate the polluted environment through novel approaches such as Nanobiotechnology.
        6.
        2009.11 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study is to investigate electro-generation of free Cl, ClO2, H2O2 and O3 and degradation of Rhodamine B in solution using Ru-Sn-Sb electrode. Electrolysis was performed in one-compartment reactor using a dimensionally stable anode(DSA) of Ru-Sn-Sb/Ti as the working electrode. The effect of applied current (0.5-3 A), electrolyte type (NaCl, KCl, HCl, Na2SO4 and H2SO4) and concentration (0.5-2.5 g/L), air flow rate (0-3 L/min) and solution pH (3-11) was evaluated. Experimental results showed that concentration of 4 oxidants was increased with increase of applied current, however optimum current for RhB degradation was 2 A. The generated oxidant concentration and RhB degradation of the of Cl type-electrolyte was higher than that of the sulfate type. The oxidant concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.75 g/L. Optimum air flow rate for the oxidants generation and RhB degradation was 2 L/min. ClO2 and H2O2 generation was decreased with the increase of pH, whereas free Cl and O3 was not affected by pH. RhB degradation was increase with the pH decrease.
        7.
        2006.01 KCI 등재 서비스 종료(열람 제한)
        The degradation of Rhodamine B (RhB) in water was investigated in laboratory-scale experiments, using five advanced oxidation processes (AOPs): UV/H2O2, fenton, photo-fenton, UV/TiO2, UV/TiO2/H2O2. The photodegradation experiments were carried out in a fluidized bed photoreactor equipped with an immersed 32 W UV-C lamp as light source. Initial decolorization rate and COD removal efficiency were evaluated and compared. The results obtained showed that the initial decolorization rate constant was quite different for each oxidation process. The relative order of decolorization was: photo-fenton > UV/TiO2/H2O2 > fenton > UV/H2O2 > UV/TiO2 > UV > H2O2. The relative order of COD removal was different from decolorization: photo-fenton ≒ UV/TiO2/H2O2 > UV/TiO2 > fenton > UV/H2O2. The photo-fenton and UV/TiO2/H2O2 processes seem to be appropriate for decolorization and COD removal of dye wastewater.