본 연구에서는 천연 생리활성물질인 에코사펜타엔산을 다량 함유한 흑해삼의 항산화 효과를 조사하여 기능성 화장품 원료로서의 우수성을 제시하였다. 세포내 산화질소(NO) 생성 억제 효과에 대 해 해삼 추출물의 활성산소 제거능을 평가하였다. 해삼의 생리활성물질은 활성산소를 제거하는 항산화 효과가 있으며, 평가 결과 우수한 NO 생성이 억제됨을 확인하였다. 연구에 따르면 생리활성 물질은 낮 은 농도에서도 높은 항산화 효능을 보여 항산화 효과, 면역 및 염증 반응 조절에 관여하는 것으로 나타 났습니다. 해삼의 항산화 제거능은 해삼 추출물의 EPA(eicosapent aenoic acid)를 함유하는 페놀 성분의 항산화 효능에 크게 기여하는 것으로 생각된다. 해삼의 항산화 성분이 작용한다는 보고와 유사한 것으로 밝혀졌다. 또한 해삼 추출물에 다량 함유된 에이코사펜타엔산(EPA) 성분이 염증 활성 억제 효과에 관여 하는 것으로 입증돼 상처 치유에도 탁월하다. 본 연구의 결과, 해삼 추출물에 함유된 페놀 성분의 효과 가 항산화 활성과 밀접한 인과관계가 있음을 확인하였다.
Among fatty acid families, the polyunsaturated fatty acids were demonstrated to be mediators in various reproductive processes as precursor of steroid hormone (via cholesterol) and prostaglandins (via arachidonic acid), and in the last decade, major research was focused on the effects of omega-6 and especially omega-3 fatty acid. Eicosapentaenoic acid, the longest members of omega-3 fatty acid family, can be produced by a series of desaturation and elongation reactions from shorter member such as α-Linolenic acid. However, very few studies have provided detailed descriptions of Eicosapentaenoic acid effects and mechanisms of action in mammalian oocytes. The purpose of this study was to evaluate the effect of Eicosapentaenoic acid supplementation on in vitro maturation and developmental potential of porcine oocytes. Various concentrations of Eicosapentaenoic acid was added into in vitro maturation medium, and we evaluated the degree of cumulus expansion, nuclear maturation rate, blastocysts quality, and levels of prostaglandin E2, 17β-estradiol, progesterone in the spent medium. High doses (100 mM) of Eicosapentaenoic acid supplementation significantly inhibited cumulus expansion and oocyte nuclear maturation, and prostaglandin E2 synthesis also significantly decreased compared with other groups (p < 0.05). Supplementation of 50 mM Eicosapentaenoic acid showed higher quality blastocysts in terms of high cell numbers and low apoptosis when compared with other groups (p < 0.05), and synthesis ratio of E2/P4 also significantly increased compared with control group (p < 0.05). However, Supplementation of 100 mM Eicosapentaenoic acid showed high apoptosis when compared with other groups (p < 0.05), and synthesis ratio of 17b-estradiol/progesterone also significantly decreased compared with control group (p < 0.05). Our results indicated that supplementation with appropriate levels of Eicosapentaenoic acid beneficially affects the change of hormone synthesis for controlling oocyte maturation, leading to improved embryo quality. However, high doses of Eicosapentaenoic acid treatment results in detrimental effects.
This project has been worked out for isolation of EPA-producing bacteria from marine source of sea water, sea sediment and intestinal contents eviscerated from some red-muscle fish such as mackerel, horse-mackerel and spike fish. The samples were precultured on the media of PPES-II glucose broth and then pure-cultured on Nutrient agar and P-Y-M glucose. Lipids extracted from those bacterial mass collected by centrifugation were analysed in terms of lipid class and fatty acid composition. The results are resumed as follows : 1. 112 strains from sea water and 76 strains from sea sediment were tested for their EPA producing capability, but both strains of (SA-67 and SA-91) from the former and four strains(SS-35, 37, 51 and 71) from the latter have been proved to produce EPA above the level of 2% of total fatty acids. The strains such as GS-11, 29, 31, HM-9, 29, B-18, 33, 107, YL-129, 156, 203, 77, 104 and 256 which were isolated from fish intestinal contents, have also produced EPA at higher level than 2% of total fatty acids. 2. Contents of total lipids extracted from the cultures of these strains grown at 25℃, range from 2.8% to 6.9% (on dry weight %), and they are mainly composed of polar lipids(40.9~52.9%) such as phosphatidyl glycerol(+cardiolipin)(?) and phosphatidyl ethanolamine (33.8~40.0%), with smaller amount of free fatty acid (11.2~20.2%). 3. EPA was isolated from a mixture of fatty acid methyl esters obtained from the lipid of each strain by HPLC in silver-ion mode and was identified by GC-Mass spectrometry. 4. The strains of SW-91, GS-11, GS-29, HM-9, B-18 and YL-203 grown at 25℃ have a level of 5% EPA in their total fatty acids, and the GS-11 and HM-9 strains show a tendency of increase in the EPA level with an increase of growth temperature.
In order to investigate of the Influence of Mg2+, Ca2+ on α-linolenic acid converted into the eicosapentaenoic acid(EPA) and docosahexaenoic acid(DHA) forming in plasma lipid and in liver microsomes of rabbit, the animals were fed on the perila oil rich α-linolenic acid or sardine oil rich EPA and DBA diet for 4 weeks were examined. In plasma, liver lipid, Mg2+ was influenced on arachidonic acid(AA), EPA, DHA formative from α-linolenic acid in perilla oil, but stearic acid was increased, Ca2+ was Influenced on stearic acid increased and DHA was decreased. In phospholipid, Mg2+, Ca2+ was influenced on stearic acid increased and DHA was decreased in perilla oil.