검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2009.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tumor cells under hypoxic conditions are often found due to the rapid outgrowth of their vascular supply, and,in order to survive hypoxia, these cells induce numerous signaling factors. Erk is an important kinase in cell survival, and its activity is regulated by Raf kinases through numerous growth factor receptors. The authors investigated Erk activation and Raf/Erk signaling using the hypoxia-mimetic agent, cobalt chloride (CoCl2), in oral squamous cell carcinoma (OSCC) cells. CoCl2 increases Erk phosphorylation in both a dose- and time-dependent manner. In addition, blocking the activation of epidermal growth factor receptor (EGFR) using PD168393 abolished Erk activation in response to CoCl2, suggesting that Erk phosphorylation by CoCl2 is dependent on EGFR.
        4,000원
        2.
        2006.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is well known that the imbalance between epithelial cell growth and inhibitor factors may cause human epithelial cancer. Over-expression of the epidermal growth factor receptor(EGFR) has been implicated in the development of oral squamous cell carcinoma. ZD1839 inhibits selectively the EGFR tyrosine kinase activity and is clinically used for cancer patients. However the mechanisms by which it exerts its anti-tumor activity remains unclear. This study attempted to determine the mechanisms underlying the effects of ZD1839 on the cellular level and to characterize the effects of ZD1839 with regard to human oral squamous cell carcinoma(OSCC) cell growth. The YD-10B and YD-38 cell lines established from OSCC in the department of Oral Pathology, Yonsei University College of Dentistry and ZD1839(Iressa) were used for this study. The inhibition of cell proliferation induced by ZD1839 was reversible and the lowest dose of ZD1839 that produced statistically significant growth inhibition in YD cell lines were 0.1 μM. The delay in cell cycle progression was induced by 0.1 μM of ZD1839 treatment after 24 hr. This reduction in cell proliferation and cell cycle delay were associated with up-regulation of the cyclin dependent kinase inhibitor(CDKI), P21CIP1/WAF1 and P27KIP1. Reduced expression of cyclin D1 was also observed after treatment with ZD 1839 to YD-38 cells but not to YD-38. The present results suggest that the antiproliferative effects of ZD1839, in vitro was associated with degradation of cyclin D1, which may be used as a possible indicator of a high cell sensitivity to ZD1839.
        4,000원