To accurately determine the resection margin for maxillary cancer, it is important to closely examine the extent of tumor infiltration into the maxilla, nasal cavity, maxillary sinus, palate, and surrounding tissues. Various methods have been described for the resection of maxillary tumors, such as alveolectomy, partial maxillectomy, subtotal maxillectomy, total maxillectomy, and extended maxillectomy. The objective of this study was to introduce external carotid artery (ECA) ligation on the ipsilateral side, a perioperative bleeding control method with fewer complications. Incidence of major bleeding during maxillectomy is a rare but potentially life-threatening complication. Cases of temporary bleeding from an internal maxillary artery or other sites can be stopped, packed, and compressed. However, bleeding control is eventually achieved by ligation of the ECA or selective embolization. Herein, we report the case of a 60-year-old male with squamous cell carcinoma of the right maxilla, which was eventually treated with subtotal maxillectomy along with an elective ECA ligation for intraoperative bleeding control. The procedure produced no preoperative or postoperative bleeding. ECA ligation is a simple, effective, safe, and (at the operator’s discretion) recommended method of perioperative bleeding control during maxillectomy.
Introduction
In the past study, the relationship between the power structure of marketing and research and development (R&D) and NPD performance was not consistent (Atuahene-Gima & Evangelista, 2000; Engelen & Brettel, 2012; Li & Atuahene-Gima, 1999, 2001). The inconsistency may result from each study in different industrial contexts. It reflects every NPD project faces different environmental uncertainties. Furthermore, we adopt the external control perspective to glue power structure and NPD performance under a certain external environment together. Therefore, this paper tends to fulfill the gap of prior study, and the main objective of this research is to investigate whether the power structure of marketing and R&D functions have different linear relationships under the different level of environmental uncertainty. A NPD team is like a cross-functional organization that the NPD team is composed of multiple functions, and it has independent budgets. The members in the team will allocate their limited resources like budgets or positions to respond environments and to maximize profits.
Theoretical Development
When a NPD team faces the high market uncertain situation, marketing function can gather more resources because of its own power. Thus, R&D members in a NPD team may have less determination in the process of NPD. Even though they create a new product, marketing specialists make most decisions in the NPD team. According to function’s contribution argument, the more contribution of a certain function to the NPD process, the more positive related to the new product success (Atuahene-Gima and Evangelista, 2000; Atuahene-Gima and Luca, 2008; Li and Atuahene-Gima, 1999). Therefore, the current study proposes the hypothesis1 described below:
H1: Market uncertainty will strengthen the relationship between power structure leaned to marketing and NPD successes.
When a NPD team encounters the fast technological change situation, R&D function has more resources because of power. New product teams, however, usually have scare resources, so that another important function like marketing will have fewer resources than R&D function. Thus, marketers in a NPD team may have less determination in the process of NPD. The marketers may have some influence on launch stage like sales and promotion or distribution channels (Hsieh et al., 2008), but R&D specialists make most decisions in a NPD team. Therefore, the current study proposes the hypothesis2described below:
H2: Technological uncertainty will strengthen the relationship between power structure leaned to R&D and NPD successes.
Eisenhardt and her colleagues indicated that the organizations in high velocity environments have better performance when they decentralize the power structure (Eisenhardt, 1989; Eisenhardt and Bourgeois, 1988). They also described that this firm tended to introduce a new product line, and that its channel partners were fighting with each other by price wars but the dominant marketing function did not have enough time to perform its regular job. To maintain its power and resources, the dominant function may highlight its importance, so it will withhold external information and enable other members to perceive the external environment what dominant function expect them to perceive. When organizations find a lot of environmental changes, it is too late. Therefore, in the beginning organizations adopted decentralized power structure, and allocated resources equally. The members in organizations may not snatch resources, so they may not take political actions also. For the specialists in new product development team, they could not control their unique knowledge to withhold the information and to satisfy their own self-interests. Therefore, the relationship between marketing and R&D power distribution in a NPD team and new product financial performance is weakened in high velocity environments (Eisenhardt and Bourgeois, 1988). The hypothesis3 in the current study is below:
H3: the relation between the power distribution in new product development teams and new product development successes is inverted U curve under the high technological and market uncertainty.
Coping environment could rely on top manager’s backgrounds like marketing, technology or finance (Hambrick and Mason, 1984). To maintain the status of the dominant function, the dominant function will lead the organization to identify the important problems related to its function. In order to ensure keeping their power, moreover, the dominant function could institute some regulations or create norms. According to resource dependence perspective, if an organization has higher the formalization of power, the dominant function could gather more resources because of legitimacy. Further, the higher formalization of power may strengthen the relationship between power distribution and performance. Thus, our hypothesis 4 is below:
H4: Under the higher formalization of power in a new product development team, the stronger relationship between the marketing and R&D power distribution and new product performance than under the lower degree of formalization of power situation.
Research Design
The current study used questionnaire survey and purposive sampling method to collect data. In order to eliminate the bias of common method variance (CMV), this study conducted multiple sources including project managers, the member charging marketing, and the member charging R&D to administrate questionnaires differently. In order to avoid selection bias, this study, moreover, asked the informants select the most recent new products developed and launched for minimum of twelve months. We sent three types of questionnaires to project managers, the member charging marketing, and the member charging R&D respectively. The current study sent questionnaires to 112 firms, and 69 firms are returned. The response rate is 61.61%. At new product level, there are 207 new product projects, and 100 firms are returned. The response rate is 48.31%. We also do tests of bias due to nonresponse which were conducted by using a comparison of early to late respondents’ all variable means (Armstrong & Overton, 1977). No evidence of a bias was found. The current study applied Moorman’s (1995) operationalization of new product performance is that the extent to which the product has achieved the objective of market share, sales, return on assets, profit margin, and return on investment during the first 12 months of its life in the marketplace. These items were used a 7-point Likert scale where 1 was “low” and 7 was “high”. This research adopted Homburg et al. (1999) scale to measure the power structure between marketing and R&D functions by using 100-point constant-sum scale for each NPD issue, and other previous studies also used issue-based perceptual power scale (Enz, 1989; Hinings et al., 1974; Pfeffer, 1981; Verhoef and Leeflang, 2009). The current study adopted Jaworski and Kohli’s (1993) scale to measure market and technological turbulence. The items were used a 7-point Likert scale where 1 was “extremely disagree” to 7 was “extremely agree”. In order to rule out other effects, we controlled industrial category, firm age, the number of marketing and R&D members involved in the NPD process, environmental hostility.
Result and Conclusion
The first finding is that under low market uncertainty and high technological uncertainty, balance of power structure tends to swing to the side of R&D function, and achieve better in NPD performance. Take IC design of High-tech industry as an instance, NPD project ends to perform better when the balance of power structure swing to the side of R&D function. The second finding is that under high market uncertainty and low technological uncertainty, NPD formalization helps to strengthen the relationship between marketing and NPD performance. Take frozen dessert in the food industry or leisure and sports fabrics in the textile industry as examples, formalization of NPD process can help marketing-driven NPD projects perform better in market. These findings advanced the understanding of the relationship between the power structure of marketing and R&D and NPD performance, rather than focusing on a single function, marketing or R&D. Furthermore, examining the relationship between the power structure of marketing and R&D and NPD performance in different environment uncertainty situations explained the inconsistency of the relationship between the power structure of marketing and R&D and NPD performance in past studies. Finally, this research conditionally supported the moderating effect of NPD formalization on the relationship between the power structure of marketing and R&D and NPD performance, and this exploration never been found.
Large glass furnaces to produce glass for CRT are housed in huge chambers. It is costly to maintain such a chamber in constant temperature, humidity, and (air) pressure. In this study, first, we show that the process of such a huge furnace, which requir
For the cost-effective biological nitrogen removal (BNR) process whose characteristics of influent have low COD/N ratios, the automatic control system for the addition of external carbon based on oxidation-reduction potential (ORP) data in an anoxic reactor has been developed. In this study, it was carried out with a pilot-scale Bardenpho process which was consisted of anoxic 1, aerobic 1, aerobic 2, anoxic 2, aerobic 3 tank and clarifier. Firstly, the correlation coefficient (R2) of the dosage of external carbon source and ORP value was about 0.97. Consequently, the automatic control system using ORP showed that the dosage of external carbon source was decreased by about 20% compared with a stable dosage of 75 mg/L based on the COD/N ratio of the anoxic influent.