Since 'The Act on Private Investment of The Infrastructure' was established in 1994, private investment as well as government's investment in transport infrastructure has been active. However investment in transport infrastructure has more risks than others' due to uncertainty both in traffic volume and in construction cost. In the current appraisal procedure of deciding transportation infrastructure investment, instead of risk management, the sensitivity analysis considering only the changes of benefit, cost and social discount rate which are main factor affecting economic feasibility is carried out. Therefore the uncertainty of various factors affecting demand, cost and benefit are not considered in feasibility study. In this study the problems in current investment appraisal system were reviewed. Using Delphi technique the major factors which have high uncertainty in feasibility study were surveyed and then improvement plan was suggested in the respective of classic 4 step demand forecasting method. The range estimation technique was also mentioned to deal with the uncertainty of the future.
본 연구에서는 미급수지역의 주요 수원인 지하수의 수위 변동 상황을 기반으로 한 미급수지역 가뭄 예보 기법 개발을 목적으로 하였다. 이를 위해 지역화된 표준지하수지수(SGI)와 표준강수지수들(SPIs)의 상관관계를 분석하였다. 관측 지하수위로부터 산정된 SGI의 자기회귀 특성 및 지속기간별 SPI와 SGI의 상관관계를 동시에 고려할 수 있는 NARX (nonlinear autoregressive exogenous model) 인공신경망 모형을 이용하여 지역별 예측모형을 구축하였다. 학습기간 동안 관측 SGI와 모델 출력 SGI의 상관계수는 0.7 이상인 곳이 전체 167개 지역별 모형 중 146개(87%)로 상관성이 높은 것으로 분석되었다. 적용기간에 대해서는 평균제곱근오차와 상관계수로 모형을 평가하였다. 본 연구를 통해 기상청에서 제공하는 59 개 관측소별 강수량 전망 값으로부터 산정된 지속기간별 SPI와 관측된 지하수위를 이용한 지역별 SGI 전망이 가능하도록 하였으며, 미급수지역의 가뭄 예‧경보를 위한 기초자료로 활용이 가능토록 하였다.
본 연구에서는 미급수지역의 주요 수원인 지하수위 현황을 이용한 가뭄 모니터링 기법을 개발하기 위해 256개의 국가지하수관측망 관측 자료를 이용하여 관측소별, 월별 수위분포를 핵밀도함수로 추정하였다. 추정된 누적분포함수를 이용하여 월별 지하수위의 분위수를 구하고, 분위수를 정규화 하여 표준지하수지수(SGI)를 산정하였다. 관측소별로 산정된 SGI는 티센망을 이용하여 167개 시군별 SGI로 변환하였다. SGI의 범위에 따른 가뭄등급을 설정하여 시군별 지하수 가뭄 정도를 모니터링 할 수 있는 기법을 제시하였다. 이를 통해 계측이 이루어지지 않는 미급수지역의 지하수 가뭄상황을 국가지하수관측망을 활용해 간접적으로 판단할 수 있도록 하였다.
초단기 홍수예보를 위한 주요자료로서 최근 기상레이더의 중요성이 크게 부각되고 있다. 기상레이더는 넓은 지역에 걸쳐 실시간으로 강우현상 감시가 가능하며 지상우량계로는 파악이 불가능한 미계측유역을 통과하는 강우장의 이동 및 변화 파악이 가능한 장점이 있다. 본 연구는 강우장의 공간적 분포와 레이더 강우세포를 추적하는 강우장 예측 해석방안을 수립하였다. 이를 위해 강우장의 공간적인 이동을 고려하기 위해 강우장의 바람장 이류(advection) 패턴을 추출하여 각 강우세포가 가지는 이동방향 및 속도를 고려한 강우장 추적기법을 통하여 강우장을 예측하였다. 본 연구를 통하여 개발된 기상레이더 강우장 상관분석 기법을 활용한 초단기강우예측 결과는 집중호우시 홍수 예·경보를 위한 수문모형의 입력자료 로 활용이 가능할 것으로 사료된다.
This study examined test piece production and on-the-spot test results of power supply system of road surface temperature sensor module that was put to forecast road freezing at bridge section. The temperature sensor module was produced to replace sensitive sensor (temperature and humidity sensor) of road surface that was put by wire system, and to supply power on-the-spot by itself, And, the study researched optimization considering power consumption for self power generation and sensor operation.
본 연구에서는 연속형 강우-유출모형과 앙상블 칼만 필터 기법을 연계하여 실시간 하천유량 예측모형을 개발하고 자료동화로 인한 정확도 개선 정도를 평가하고자 한다. 대상유역은 안동댐 상류유역을 선정하고 2006.7.1~8.18과 2007.8.1~9.30의 홍수기간에 대해 평가를 수행하였다. 자료동화를 위한 모형 상태변수는 유역의 토양수분과 저류량 및 하도 저류량을 선정하였으며 하류 댐 지점의 관측유량을 이용하여 상태변수를 갱신하도록 모형을 설계하였다. 상태
매년 여름철 집중호우에 의한 산사태가 지속적으로 발생하고 있으나, 국내에서 산사태 분석에 대한 연구는 미진한 편이다. 현재 산사태 분석에 광범위하게 활용되는 GIS 분석기법(정성적 분석)은 주관적인 요소가 많아 산사태 위험지 평가시 위험지역이 넓게 나타나는 광역적 분포양상을 보인다. 본 연구에서는 중첩기법을 통한 정성적 분석방법을 보완하기 위하여 SINMAP 프로그램을 활용한 무한사면해석을 실시하였다. SINMAP을 통한 무한사면분석기법은 확률적 기법과 수리적 모델을 결합하여 정량적인 분석이 가능하도록 한다. SINMAP을 활용하여 기존 산사태 발생지역에 대한 산사태 분석결과 예측지역과 기존 산사태 발생지역이 거의 일치하는 것으로 분석되었다. 또한, 기존 산사태 분석기법에 비하여 산사태 발생가능지역의 정밀도가 향상됨을 확인하였다. 이러한 산사태 위험지 예측기법연구는 일정시간 강우가 지속되지 않을 경우 산사태 발생가능성이 없으므로, 향후 산사태 위험지 선정 후 강우조건에 따른 연계해석을 병행하여 산사태 위험지 평가에 대한 신뢰도를 높여야 한다.
최근 지구 온난화로 인한 이상기후의 영향으로 게릴라성 집중호우의 피해가 증가하고 있으므로 대하천뿐만 아니라 중 소하천에서도 홍수 예 경보의 중요성이 높아지고 있다. 기존의 홍수 예 경보 체계의 경우 유출량을 계산하는 전처리과정과 주 계산과정을 거치는 동안 많은 오차들이 발생하고, 누적되어 그 결과물(예측된 유출량) 속에 오차들이 내포되어 있다. 또한 유출모형의 적용에 필요한 매개변수들을 추정하기 위해서도 많은 실측자료가 필요하고, 많은 불확실성이 내재되
본 연구는 낙동강수계인 위천 유역의 최하류 군위 지점에 대해 추계학적 모형인 Box-Jenkin의 승법 ARIMA 모형과 상태공간모형 이론적 토대로 하여 계절별 월 유출량을 모의하였다. 다변량 시계열 모형인 상태공간모형의 입력변수로 월 유효우량과 균등기간의 관측된 월 유출량을 사용하여 군위지점의 월 유출량을 예측한 결과 다변량 시계열 모형인 승법 ARIMA모형에 비하여 표준오차가 작게 나타났으므로, 유효우량과 유출량을 함께 이용하는 상태공간 모형을 이용
Statistical SO_2 forecasting technique by multiple regression analysis was designed and developed to predict SO_2 concentration in Wonju City.
SO_2 concentration data measured from air pollution monitoring system and meteorological factors data such as : wind speed, atmospheric stability, surface temperature, relative humidity and precipitation were used in Wonju City during the 1996∼1997.
As the results, correlation model for forecasting was well fitted with some parameters including minimum temperature, wind speed and the SO_2 concentration of the previous day.