검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2014.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The existing metal getters are invariably covered with thin oxide layers in air and the native oxide layer must be dissolved into the getter materials for activation. However, high temperature is needed for the activation, which leads to unavoidable deleterious effects on the devices. Therefore, to improve the device efficiency and gas-adsorption properties of the device, it is essential to synthesize the getter with a method that does not require a thermal activation temperature. In this study, getter material was synthesized using palladium oxide (PdOx) which can adsorb H2 gas. To enhance the efficiency of the hydrogen and moisture absorption, a porous layer with a large specific area was fabricated by an etching process and used as supporting substrates. It was confirmed that the moisture-absorption performance of the SiO2/Si was characterized by water vapor volume with relative humidity. The gas-adsorption properties occurred in the absence of the activation process.
        4,000원
        3.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Getter property of nano-sized metallic powders was evaluated as a possible candidate for the future getter material. For the purpose, Ti powders of about 50 nm were prepared by electrical wire explosion. Commercial Ti powders of about 22 micrometer were tested as well for comparison. The room-temperature hydrogen-sorption speed of nano-sized Ti powders was which was more than 4 times higher than that of micron-sized ones. The value is comparable to or even higher than those of commercial products. Its sorption speed increases with activation temperature up to above which it deteriorates due to low-temperature sintering effect of nano-sized particles.
        4,000원
        4.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hydrogen sorption speeds of amorphous alloy and its crystallized alloys were evaluated at room temperature. amorphous alloy was prepared by ball milling. The hydrogen sorption rate of the partially crystallized alloy was higher than that of amorphous. The enhanced sorption rate of partially crystallized alloy was explained in terms of grain refinement that has been known to promote the diffusion into metallic bulk of the gases. The grain refinement could be obtained by crystallization of amorphous phase resulting in the observed increase in sorption property.
        4,000원
        7.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hydrogen sorption speed of nanocrystalline and amorphous alloys was evaluated at room temperature. Nanocrystalline alloys of were prepared by planetary ball milling. The hydrogen sorption speed of nanocrystalline alloys was higher than that of the amorphous alloy. The enhanced sorption speed of nanocrystalline alloys was explained in terms of surface oxygen stability which has been known to retard the activation of amorphous alloys. The retardation can be reduced by formation of nanocrystals, which results in the observed increase in sorption properties
        4,000원