Panax ginseng C.A. Meyer, commonly known as Korean or Asian ginseng, is a perennial herb which is native to Korea and China. Its roots are highly prized for several medicinal properties. Therefore, Ginseng has been a top-ranked subject of many fields of scientific research worldwide. However, very limited number of research work has been published on species authentication using DNA marker system. In this study, 22 simple sequence repeat (SSR) markers were used to analyze the genetic diversity and population structure of 167 ginseng cultivars from 11 regions and 10 breed varieties. A total number of 111 alleles were detected, with an average of 5.05 per locus. The average expected heterozygosity and polymorphism information content (PIC) for SSR locus were 0.35 and 0.30, respectively. The model-based structure analysis revealed that 66.5% of all cultivars could be grouped into three populations with inferred value (allele shared >70%) membership. More than 33% of tested cultivars derived from two ancestries, which was basically consistent with clustering based on genetic distance. Almost all of the cultivars shared the ancestry with S1 and S2 except 1 China Jilin and 3 USA cultivars. The result indicated that most of Korean ginsengs are closely interrelated between the two ancestors but USA ginsengs are totally different from Asian cultivars.
This study was conducted to investigate changes in composition of ginsenosides and color of processed ginsengs prepared by different steaming-drying times. Processed ginsengs were prepared from white ginseng with skin by 9-time repeated steaming at 96℃ for 3 hours and followed by hot air-drying at 50℃ for 24 hours. As the times of steaming processes increased, lightness (L value) decreased and redness (a value) increased in color of ginseng powders. Crude saponin contents and ginsenosides compositions in processed ginsengs prepared by different steaming-drying times were investigated using the HPLC method, respecively. Crude saponin contents according to increasing steaming-drying times decreased in some degree. In the case of major ginsenosides, the contents of Rb1, Rb2, Rc, Rd, Rf, Re, RG1, Re were decreased with increase in steamimg times, but those of Rh1, Rg3, Rk1 were increased after especially 3 times of steaming processes. Interestingly, in black ginseng were prepared by 9 times steaming processes, the content of ginsenoside Rg3 was 8.20 mg/g, approximately 18 times higher than that (0.46 mg/g) in red ginseng. In addition, the ratio of the protopanaxadiol group and protopanaxatiol group (PD/PT) were increased from 1.9 to 8.4 due to increasing times of steamming process.
This study was carried out to determine changes in general chemical composition, free sugars, physicochemical properties of extract, and ginsenoside contents depending upon processing methods. Ginseng roots harvested from the same field were employed for the processing into white ginseng (WG), taegeuk ginseng (TG), red ginseng A (RGA, steamed one time), and red ginseng B (RGB, steamed three times). The fat content decreased by increasing duration of treatment and number of steaming treatment. On the other hand, there was no significant variation in contents of ash and carbohydrate depending on processing methods. Contents of sucrose and maltose was higher in Taegeuk and red ginseng than those of white ginseng. Steamed ginseng root (taegeuk and red ginseng root) showed higher amount of water extractable solid than the unsteamed white ginseng, but the variation of crude saponin content was not distinctive depending on processing methods. The contents of total ginsenosides increased by the order of white, taegeuk, red A, and red B root. In summary, chemical composition and total ginsenoside content were different according to part of root and processing methods, thus implies the importance of quality control as well as pharmacological activity of ginseng root.
토양에서 화강암 지역은 Al2O3, Na2O, 천매암 지역은 Fe2O3, MnO, MgO, 혈암 지역은 SiO2, CaO에서 높았다. 이 화강암 지역과 천매암 토양의 원소 특성은 이들 토양 중의 광물 차이를 반영한다. 상관관계에서 화강암, 천매암, 혈암 3지역 공히, 정의 관계가 Al2O3-K2O, Fe2O3-MgO 쌍에서, 부의 관계가 SiO2-CaO 쌍에서 나타났다. 인삼에서 동일 연생 인삼의 지역적 비교 시 2, 3년에 관계없이 혈암 지역이 높은 함량 원소가, 화강암 지역이 낮은 함량의 원소가 많았다. 즉 2년생은 천매암 지역의 Fe, Ca, 혈암 지역의 Al, Mn, Na, Ti에서, 3년생은 화강암 지역의 Mn, Na, 천매암 지역의 Ca, 혈암 지역의 Al, Fe, Ti에서 높은 값이 나타났다. 같은 지역 인삼의 연생 차이별 비교에서 3지역 공히 2년생에서 Al, Na, Ti가 높았다. 또한 화강암 지역은 2년생의 Al, Mn, Mg, Na, Ti, 3년생의 Fe, Ca에서, 천매암 지역은 2년생의 Al, Fe, Mg, Ca, Na, Ti, 3년생은 Mn, K에서 높았다. 지상부의 무기성분 함량에 대한 2, 3년의 지역 별 비교에서 혈암 지역이 높은 원소가 많았고 화강암 지역이 낮은 원소가 많았다. 2년생의 경우 화강암 지역은 Ca, 천매암 지역은 Fe, Ca, 혈암 지역은 Al, Mn, Na, Ti에서, 3년생의 화강암 지역은 Mn, 천매암 지역은 Ca, 혈암 지역은 Al, Fe에서 높았다. 상관관계에서 2, 3년생의 경우 공히 Al-Ti, Mn-Na쌍에서 정의 관계가 나타났다. 뿌리의 무기성분 함량에서 2년생은 화강암 지역에서 높은 원소가 많았고, 천매암 지역이 낮은 원소가 많았다. 3년생은 혈암 지역에서 높은 원소가 많았고, 천매암 지역이 낮은 원소가 많았다. 즉 2년생은 화강암의 Al, Mn, Na, 천매암 지역의 Fe, Ca, 혈암지역의 Ti에서, 3년생은 화강암 지역의 Ca, Na, 혈암 지역의 Al, Fe, Mn, Ti에서 높았다. 2년생은 화강암 지역의 Fe, 천매암 지역의 Al, Mn, Na, Ti, 혈암 지역의 Ca, 3년생은 화강암 지역의 Fe, 천매암 지역의 Al, Mn, Na, Ti, 혈암 지역의 Ca, K에서 낮았다. 지상부와 뿌리 부분 비교에서 지역에 관계없이 수 배 차이로 Fe, Mn, Ca는 지상부가, Ti는 하부가 높았다. 지역에 관계없이 Mn, Ca, Fe, Al, Na, Ti 순서로 지상/하부 비율이 내려갔다. 토양과 인삼의 무기성분 함량관계에서 지역에 관계없이 Ca는 수 십 배의 차이로, Mn는 수 배에서 수 십 배 차이로 인삼이 높았고, Na, Fe, Ti, Al은 수배의 차이로 토양이 높았다. 인삼과 토양의 비에서 대부분 지역이 2년생이 크고 3년생이 작았으며, 지역에 관계없이 공히 Al, Mn, Na는 2년생이 크고 3년생이 작았다. 이 결과는 인삼의 연령이 증가함에 따라 토양 중 원소를 흡수하여, 더욱더 토양의 특성을 반영하기 때문으로 생각된다.
장뇌삼의 효능 및 품질 특성을 잘 반영할 수 있는 장뇌삼 열수추출물을 첨가한 캔디제품을 제조하고 그의 품질특성을 조사하였다. 캔디제품의 수분함량은 수준이고, 장뇌삼추출물첨가구는 조단백질 , 조지방 , 조섬유 , 조회분 로 높은 함량이었다. 당도는 장뇌삼추출물첨가제품이 로 가장 높았고, pH는 수준이었다. 색도는 L값의 경우는 장뇌삼추출물첨가제품이 56.40으로 낮아지는 경향을 보였으며, a값과 b값 경우는 장뇌삼추출물첨가제품이 증가하
Ferritin light heavy chain (FLHC) gene는 일부 중금속과 결합, 저장 및 운반하여 무독화 시킬 수 있는 것으로 알려져 있다. Fe 관련 유전자인 FLHC유전자를 식물 발현용 promoter인 35S promoter와 Tnos를 사용하여 식물 형질전환용 vector를 재조합하였다. 식물세포형질전환용 binary vector는 상기 cassette vector가 조립이 매우 양호하며 border sequence를 가지고 있는 pRD400 binary vector를 사용하여 최종적으로 가나마이신 내성 유전자 (NPT II gene)와 tadpole ferritin heavy chain gene 및 human ferritin light chain gene를 함유하고 있는 binary vector를 재조합하였다. Binary vector의 아그로박테리움에 도입은 triparental mating 방법에 의하여 수행하여 AB배지 및 가나마이신 함유 배지에서 disarmed Ti-vector를 가지고 있는 Agrobacterium tumefaciens MP90/FLHC을 선발하였다. FLHC 유전자 도입된 식물형질전환용 binary vector를 이용하여 형질전환방법을 변형하여 많은 embryo를 유도하였으며 유도된 embryo들은 GA 10mg/L가 첨가된 배지에 지상부를 유도하였다. 형질전환체식물체의 정상적인 생장을 유도하기 위해 최적의 배양조건을 조사하였던 바, 비교적 1/3 MS배지에서 뿌리의 생장과 지상부의 생장이 균일하게 생장하는 경향을 보였으며, 뿌리와 줄기가 잘 발달된 약 7cm의 유식물체를 대량으로 증식하여, 모래와 흙이 1:1로 혼합된 토양에 옮겼다.
일반적으로 토양의 경우 천매암 및 셰일 지역이 높은 원소 함량을 보였고 원소의 상관관계에서 셰일 지역이 많은 원소에서 높은 상관관계를 보였다. 지역에 따른 인삼의 2년근과 3년근의 비교에서 2년근에서 높았는데, 특히 화강암과 편마암지역이 셰일지역에 비해 2년근에서 두드러지게 높았다. 같은 연령 인삼들의 지역적 비교에서 화강암지역이 낮았으며, 셰일 및 천매암의 비교에서는 셰일이 높았다. 인삼의 부위 별 비교에서 2년근과 3년근에 관계 없이 상부가 높은 원소함량을 보였다 토양과 인삼 평균치와의 비교에서 대부분 원소가 인삼 조성에 비해 토양에서 높은 함량을 보였고, 토양과 인삼조성 관계에서 유사한 증감 경향을 보였다. 전체적으로 일반적인 전이원소의 부정적인 영향을 전제로 하면 세 토양중 화강암 지역이 인삼의 최적지이며 셰일 지역이 제일 불리한 지역임을 암시한다.